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PROLOGUE

A void that can be filled

Roberto Doberti 

The  phrase  that  stated  “nature  abhorres  void”  and  the  Latin  expression  that 
follows: horror vacui, have always intrigued me. For centuries they were more than 
language expressions, they were strong convictions. As nature could unexpectedly 
“abhor” or become horrified it was necessary to spare her these bad moments. So,  
everything was filled with ubiquitous ether, which temporarily pacified those spirits 
that needed to feel complete, fulfilled, satiated (as can be seen, the correspondence 
with nutritional metaphors are not irrelevant).

Once this illusion was destroyed,  we seem to,  but only seem to content with a  
nature that is “almost void”. On any scale – from cosmos to atoms –, it appears that  
what  separates  (what  is  not)  greatly  surpasses  what  is  materialized  (the 
correspondence  between  the  wealth  of  powerful  people  and  the  scarcity  of 
excluded people is also relevant here).

I suppose this is not a legitimate argument to mention my general disagreement 
with what is full,  due to the lightness with which entities are incorporated and 
because the approaching and presumed saturation is dreamt of; and with what is 
almost void, for the difficulty in thinking new and multiple existences, imagining a 
rarefied field, where drought and shortage rule.

Many years ago we determined five Types of Figures in our System of Figures. The 
Types were defined according to the dimensions of the space in which the shapes 
were included and to  the dimensions of  each figure in  relation to  its  bounding 
space. One of those Types is constituted by those shapes included in a bounding 
space of three dimensions which have two dimensions less than such space. So,  
we defined Spatial Lines. 



From the beginning, this place seemed very interesting and able to hold entities of 
particular beauty and structuring values, in short, a promising realm. 

We knew this place was not void because we already knew the helix, the lines that 
modern furniture design had already built with curved tubes and a few more. It is 
also truth that these entities only showed us a horizon of splendor which was both, 
longed for and elusive. As Adam would have said about Eden: “Everything is very 
nice, but there is not much social life”.

So, I celebrate with great enthusiasm this book: “Spatial Lines”.

Thinking it thoroughly, there are many reasons for this celebration. To begin with,  
the longed-for and multiple entities that simultaneously speak of their harmony 
and precision that  populated  this  field.  Social  life  flourishes  among the Spatial 
Lines.

It is not less important that this book is the product of diverse hands, none of which 
loses, due to this diversity, their singular tenderness in the caress of these forms.

Just like these hands are diverse and convergent, so the disciplines associated to 
these births  or  revivals  are.   General  morphology,  mathematics,  industrial  and 
graphic design, fine arts and didactics converge in concert. The moment arrives, 
and  it  is  the  best  moment,  in  which  you  no  longer  know where  one  or  other 
discipline begins or, better saying, if one of them is not present any more. Only the  
signification level can produce these miracles: but in Morphology miracles exist (or 
could it be that Morphology is a miracle?)

There is also an overlapping and recurrences of time. To recover the ancient Greek 
(Archimedes, Menaechmus and in particular Archytas), to place them in the same 
space with Moebius, with contemporary designers and artists and with students of 
the FADU is a task that requires courage and enough lack of shyness.

To conclude, I should point out that we have the history or the legend that rose with 
Archimedes death. He was killed during the capture of Syracuse by a soldier who 
could not understand the perception of time of the wise man and much less his set  
of values.

Archimedes  was  buried  in  a  tomb,  which  according  to  the  instructions  of  the 
geometer,  should  carry  as  gravestone  or  monument  the  image  of  cylinder 
circumscribing a sphere. The tomb was lost until Cicero remembered the fact and 
recovered it.  The truth is that this posthumous triumph of Archimedes was not 
definitive, because this monument is no longer known.  

This  book  can  be  understood  as  this  well  deserved  recovery.  There  is  no 
identification with the stones of  the past,  but there is a bond with the spirit  of  
research and  qualification  of  the  way of  looking  and thinking  that  Archimedes 
would surely have appreciated.

May, 2010

   



PROLOGUE

Vitality in relentless production: from geometry to product 

Claudio Guerri

It  is  well  known Edmund Husserl’s  worry,  in  his  last  years,  about the crisis  of 
Western Culture. It is well known too, his belief that humanity’s withdrawal of the 
world  of  life-world  would  be  one  of  the  main  causes  of  such  crisis,  and  he 
thoroughly looked for ways of solving this problem that distressed him.

When time came to write the prologue of the book Spatial Lines –which can enroll 
in Husserlian tradition- , the confrontation from a phenomenological point of view 
with empirical  operating capacity required of “geometrical  shapes” in industrial 
design practice, allows this short reflection, on the light of one of the text that the 
philosopher produced, beset by physical illness and the foreseen effects of the Nazi 
crisis. In his manuscript from 1936, which he wrote for his own use, entitled after 
his death: “The question about the origin of Geometry as an intentional-historical 
problem”,  Husserl  considers  his  reflection  on geometry  as a  possible  proposal 
tending to suture the divorce between everyday life and science.

In the text, Husserl gathers under the name of Geometry all disciplines that deal 
with “form”, in which mathematical existence moves in phenomenological time-
space. When he inquired about the origin, his intention was to go back, in the most 
original sense – according to which, geometry was born one day and since then it  
is present as a millenary tradition and is preserved for us-, in the living “relentless  
production”, but as the same time as “tradition”. He sustains that this tradition is 
conceived by “human activity”. Humanity, to which the first creations that emerged 
of the available, raw and “informed by the spirit” materials; gave form to novelty. 
Even if today we prefer to speak of a correspondence of different kind of values to 
those materials, consequence of experience and cognition, the time metaphor does 
not lose its validity. 

Evidently, Husserl follows, geometry should have been born from a first conceptual 
acquisition of  “primary creative activities”  and it  is  necessary to understand its 
“persistent”  way  of  being:  not  only  it  is  a  forward  movement  that  progresses 
without stopping from one conceptual acquisition to the other, but a continuous 
synthesis  in  which  all  the  acquisitions  keep  their  value,  becoming  together  an 
acquisition, so that each acquisition will be premise of the following stage.

The former  paraphrase locates  us  in  the core of  this  thought:  Husserl  did  not  
consider  Geometry  a  merely  theoretical  question,  as  the  already  mentioned 
“primary creativity” could be but- by the middle of the desolate twentieth century- 
he preferred to focus on the social operating capacity of this theoretical practice. 
Science, and specifically geometry, should have had, in a historical beginning, their 
origin  in  a  “productive  act”  logically  presented,  at  first   with  a  “project” 
conformation  –an  idea,  a  geometrical  diagram-,  where  some  hypothesis  is 
sustained,  that  then  will  be  materialized  in  an  “event  “  that  we  can,  as  today 
readers, assign to the morphological or design area.



Going further: geometrical existence does not have physical existence but it occurs 
in the morphological field; geometry has an existence of “being there”, objective, for 
everyone.  It  is  an  ideal  objectiveness,  where  a  “logical  activity”  has  to  be 
considered, specifically connected to verbal language. This activity that deals with 
both,  logic  and  project,  definitively  is  characteristic  of  a  class  of  conceptual 
products of the culture to which they belong, not only the conceptualizations and 
formal scientific productions, and sciences themselves, but also, for instance, the 
formal productions of literature, works of architecture and products of design.

This book –an indispensable link in the geometric and morphological knowledge 
applied in industrial design-, presents us the actual state of conceptualization of 
ideal  objects  contingent  to this  science;  contingency that  includes systems and 
software  of  visual  representation  that  enable  the  development  of  the  semiotic 
chain:  ideation,  representation/production  and  use.  In  fact,  representational 
technologies constitute  the conditions of  possibility,  supportive and concrete  so 
that  certain  ideal  objectivities  could  finally  materialize  as  design  objects:  the 
intentional  reactivation  of  a  significative  value  should  forcefully  precede  and 
condition the empirical determination of an object.

As  can  easily  be  understood,  the  “material  thing”  implies  some  kind  of  “res 
extensa”,  and  geometry,  morphology  and  the  ontological  and  operational 
disciplines that enable the eidetic moment of the structure of the “thing” too: the 
spatial  form.  At  the  same  time  both,  conceptual  geometry  and  operative 
morphology are responsible  of  the naturalization of  physical  space in terms of 
representational modes.

The diverse production of articles of this book gives plenty of examples that, in 
Husserl’s  way,  while  covering  geometric  milestones  join  temporal  extremes 
transforming  them  in  spatial  proximities.  The  proposal  of  the  book  and  of  its 
compilator,  Patricia Muñoz,  fills  a space where vitality of  relentless production” 
unites, within the scope “of tradition”...We have only a wish left: to expect that its 
readers will get the same benefit and pleasure I have had reading it.

May, 2010

Relevant explanations

This  book  has  many  authors.  Some  belong  to  a  research  group  in  the  IEHU, 
Laboratory of Morphology of the FADU, University of Buenos Aires that fortunately 
harbors  and  promotes  our  projects.  Others  belong  to  a  teaching  group  that 
transferred this topic to the courses of Industrial Design undergraduate program, 
FADU, UBA. Some of us belong to both groups, and we also have three special 
guests, that I want to thank especially for their contribution.

To  Nina  Enrich,  who  made  comprehensible  for  non  mathematicians  the 
demonstration of Archytas solution for doubling the cube, patiently enduring my 
doubts and questions.  

To  William Huff  who,  long time before  we started  our  research,  explored  with 
unmistakable orientation the world of nonorientable surfaces, which meet spatial 



lines in their edges and materializations. The experience of timing makes evident 
the  potential  of  looking  intentionally  to  a  form,  enabling  interesting  alternative 
visual interpretations of the same material configuration. 

To Robert Wiggs, who dissolved the limits between polyhedra and spatial lines with 
his twisted loops, showing his marvelous sensibility in his sculptures whose origin 
can be found in spatial lines combined with an enormous capability to imagine and 
design in space.

I have two thank specially two persons who generously accepted to prologue this 
book. However, my gratitude goes beyond this. To Claudio Guerri, who introduced 
me to William Huff and Robert Wiggs, who were relevant instigators of this work. 
To Roberto Doberti, for raising our curiosity, giving a name and properties to these 
exciting shapes through his work, the “Sistema de figuras”, providing a frame of 
reference for their study.  

Editorial structure

The journey suggested in this book has three moments. The first one, antecedents, 
includes the origin of this Project, which was totally accidental (if we accept that 
fate exists). It also comprises the first steps we made to introduce ourselves in the 
topic of spatial lines and the thoughts of those people who helped us to understand 
the topic. Their fascinating explorations allowed us to foresee that the road ahead 
was very interesting. 

In  the  second  one,  the  research,  graphic  and  industrial  design  products  were 
analyzed making evident the relevance spatial lines in design practice and the need 
of conceptual definitions that were produced throughout this investigation. 

In the third one,  educational  investigations,  the findings of the research project 
were transferred to the courses of Morphology for Industrial Design in order to 
check and extend this knowledge. 

Finally,  the  Appendix  includes  some  of  the  inquiries  in  intersections  between 
shapes and the variations we carried out,  which became a central  point  in the 
development of this subject-matter. 

We hope you enjoy it.

The editor



PART 1. Antecedents

CHAPTER 1

Oblivion and recovery of forms[1]

Patricia Muñoz and Juan López Coronel

New technologies provide innovative resources to understand forms as they help to 
visualize, generate and materialize our projects. They also contribute in the rescue of 
forgotten knowledge. 

Internet is a diverse registry of human knowledge. Even if its supposed distribution in 
the world population is misleading– 26% of penetration is the data of December, 2009 
(Internet World Stats) - it is an unquestionable media for connecting researchers on 
the most diverse areas.

The amount of information available is a disadvantage for its users,  even if  it  is  a 
benefit to avoid control. For example, a search engine can provide 52.000.000 items on 
the  cube,  in  different  languages.  Unapproachable.  Fortunately,  search engines  can 
filter information making it accessible, providing pleasant surprises.

Unexpected encounters: Lemniscates in space

The origin of our research in the topic that is the object this book can be found in an 
unexpected encounter.  We casually  found a spatial  line,  Archytas curve,  in the site 
Encyclopédie des formes mathématiques remarquables developed by Robert Ferréol. 
This shape is the result of the intersection of horn torus with a cylinder of the same 
diameter of its generative circle, which is tangent to its exterior surface to its axis, as 
shown in Figure 1.

Figure 1. Archytas curve as boundary curve of the intersection between a cylinder and a torus.

Progressing in this  inquiry we found out that  these lines had been studied by the 
ancient  Greeks,  beginning  with  Archytas  of  Tarento  (430-350  BC),  Pythagorean 
mathematician, statesman and philosopher. He was the first one to solve one of the 
well  known  mathematical  problems  in  antiquity:  the  duplication  of  the  cube.  [3]. 
“Eratosthenes (300 AC) reports that the inhabitants of the Greek island of Delos were 
beset by a plague and, when they consulted an oracle for advice, were told that, if they  
doubled the size of a certain altar, which had the form of a cube, the plague would 
stop.” (Huffman, 2008) The problem was to find the size of the side of the cube which 
would double the volume of the original altar. After unsuccessful efforts the Delians 
presented the problem to Plato in the Academy.  Archytas was the first to reach a 
solution, which was remarkable because solved the problem through a construction in 
three  dimensions.  This  way  of  thinking  was  uncommon  in  his  time.  He  used  the 
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intersection line of the previously mentioned surfaces,  describing the movement of 
their generative lines. Plato criticized this solution because in his vision, the value of 
geometry resides in its ability to turn from the sensible to the intelligible domain. In his  
opinion Archytas “was not focusing on the intelligible world but on the physical world 
and hence destroying the value of geometry.” (Huffman, 2008)

In spite of the temporal distance, the relation between the physical and intellectual 
world is a relevant issue in the study of forms for industrial design. What we design in 
the virtual condition of our drawings and models –no matter in which substance: paper 
or  bits-  will  be  eventually  manufactured  in  more  or  less  numerous  series.  The 
feasibility of our projects considerably relies in the designer’s rigorous knowledge of 
its form. 

Following the progress in the knowledge of spatial lines we find the work of Eudoxus 
of Cnidus (408-355BC). He studied with Archytas, was astronomer, mathematician and 
physic. He developed a planetary theory, which consisted in a number of concentric 
rotating spheres of the same diameter, rotating about axes which were oblique to one 
another, in different directions. So he came to a dynamic definition of another spatial  
line belonging to this family [4], another lemniscate in space, understanding it as the 
trajectory of a point on the equator of one of these spheres. (O'Connor, J. J. et al)

Its diagram can be seen in Figure 2. 

Figure 2. Sketch of the two spheres rotating with oblique axis in the determination of Eudoxus curve

We obtain an easier explanation of this curve, although static, if we define it as the 
intersection  of  a  cylinder  with  a  sphere,  tangents  in  their  exterior,  as  can  be 
appreciated in Figure 3.

Figure 3. Curve studied by Eudoxus of Cnidus, intersection of a sphere and a cylinder.

Another line,  of  the same family,  was the curve of  Viviani.  Vincenzo Viviani  (1622-
1703), disciple of Galileo, created this curve looking for an answer to a mathematical  
problem he raised related to architecture: he asked how four equal windows could be 
cut on a hemispherical dome so that the remaining surface can be exactly squared. 
(O'Connor, J. J. et al)

Figure 4. Curve of Viviani as an intersection of a sphere, a cylinder, a cone and a parabolic cylinder  

Other curves that belong to the same family are the bicylindrical curves, obtained by 
the intersection of two cylinders of different diameter, tangent according to the image 
shown in figure 5. There is not much historical information of the study of these lines, 
compared to the ones previously shown. 

Figure 5. Bicylindrical curve

Morphological encounters in different time and space 

Viviani´s  curve  appeared  in  a  research  project  we  were  developing  on  surfaces 
created by double rotation of the generative line. We discovered it was the edge of  
some of the shapes we produced in that exploration. 

Figure 6. Surface of double rotation, relation to the sphere and Viviani´s curve.

In  Figure 6,  we can observe a surface created by a semi-circumference that  goes 



through a double rotation, with intersecting axis; touching the generative line in one of  
its endpoints. We can also see its relation to the sphere and to Viviani´s curve.

This  opened  new  roads  of  inquiry  and  also  the  possibility  of  having  a  better  
understanding of the shapes we had produced in this way. In Figure 7 we can observe 
a fragment of de surface depicted in Figure 6, using a quarter of circumference as 
generative  line.  Its  edge  is  also  inscribed  in  the  surface  of  a  sphere  and  can  be 
determined by the intersection of this sphere with a right cone whose generative line 
is at 45 degrees from the axis.

Figure 7. Fragment of the surface of Figure 6. Relation to the sphere. Determination of its edge through 
the intersection of a sphere and a circular straight cone whose vertex lies in the spherical surface. 

It is remarkable that a double circular straight cone is the one that defines the edge of 
the complete surface of double rotation, the curve of Viviani, as its vertex is placed in 
the surface of the sphere. This relation can be seen in Figure 8. The conic surfaces, 
that  determine  both  edges,  are  placed  on  a  line  that  has  the  same angle  as  its 
generative line, 45o.

Figure 8. Relations between the intersections of cones and spheres and the determination of the edges  
of both surfaces. 

Finally, we would like to notice another interesting encounter. We found another curve 
belonging to this family in an industrial design product, the Ripple Chair, designed by 
Ron  Arad.  By  means  of  a  systematic  constitution,  through  the  extension  of  the 
generative line, he obtains the seating surface. It is remarkable that the materialization 
shows the line and allows the visualization of the intersections between the different 
lines. 

Figure 16. Ripple chair designed by Ron Arad

Resources and contributions

After this research, we still have some questions unanswered. Why are some shapes 
forgotten? Could it be because at the moment they were not useful or desirable, or 
could it be because there were no elements to draw or materialize them? Today we 
enjoy impressive conceptual  and operative  instruments,  unthinkable  for  those first 
researchers.  They increase our competence but they also carry new obligations.  If 
someone studied these shapes with minimal resources, should it be our responsibility 
to expand this knowledge from our time, bountiful of means?

We understand that digital technologies are specifically useful in the  exploration of 
these complex forms because they favor a fast visualization and they also include the 
visual  analysis  of  its  curvature.  Thinking  spatial  lines  as  intersection  of  surfaces 
allows us to control their shape, changing the parameters of this operation and of the 
figures involved in it.

In  figure  9,  a  series  of  bicylindrical  lines  are  illustrated,  which  change  their 
configuration and proportion while modifying the diameter of one of the cylinders. This 
was the starting point of various explorations that are shown in Chapter 8.

Figure 9. Changes in one of the cylinders that determine the bicylindrical curves. 

These images can be easily obtained through CAD, allowing us to use spatial lines –



created by intersections- as structuring lines in the generation of new surfaces.

For  example,  Figure  10  shows  a  surface  created  from  an  asymmetrical  spatial 
lemniscates. Even if this surface seems complex, it is developable. Its planar net can 
be obtained with one of the CAD tools, allowing the rapid construction of 3D models to 
check their design.

Figure 10. Developable surface generated from an asymmetric spatial lemniscate.  

The visualization, analysis and handling capability of designers is enhanced through 
digital  modeling.  It  allows  us  to  create  surfaces  through  non-uniform,  complex 
transformations as the ones exposed in the next chapter.

CAD-CAM software contributes to the materialization of our projects. In Figure 15 we 
can see images of handmade models of the surface of Figure 6. Even if they were 
useful during the research, they do not reflect accurately the shape as the model in 
Figure 16 does, which was produced by CNC milling.

Figure 15. Handmade models, with wire and “cartapesta”, of the surface of double rotation of figure 6.

Figure 16. CNC milled model from the CAD drawing of Juan López Coronel

Some conclusions and deviations

We consider that our projecting possibilities can be expanded with the recovery and 
reinterpretation of the relegated knowledge we have related. The exploration and the 
analysis  of  this  forgotten  knowledge,  with  the  use  of  digital  media,  create  new 
opportunities of both conceptual inquiry and concrete realizations of our projects.

This chapter is just a sample of some of the roads we traveled in this encounter of 
morphological  knowledge,  originated if  different  periods of  time.  Rediscovering the 
passion of ancient researchers on these forgotten shapes we will be able to recover 
them, creatively using the conceptual and operative instruments to extend its use and 
to transform them, making use of its morphogenerative potentiality. So they will be 
able to re-enter to our dreamt and built habitat, restructured through design. 

Notes

[1] This work is a revised edition of a paper presented at the V Congreso Nacional de SEMA, Sociedad de  
Estudios Morfológicos de la Argentina, Resistencia, Chaco, 2005 

[2] According to a classification of the “Sistema de Figuras” (System of Figures), Doberti et al. (1971). In  
this proposed order spatial lines are defined as “figures that can be included in a space of not less than 
three dimensions, and that have two dimensions less than this space”.

[3] The first answer was to build a second altar that duplicated the volume but was not a cube any 
longer. The second attempt was to build a new altar with its size twice the side of the original altar,  
failing because the volume is increased eight times. In Chapter 3 there is a more profound and extended 
explanation of Archytas solution. 

[4] A dynamic and simpler definition can be found in the site of Ferréol, R. (1993), in the Hippopede 
curve.
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CHAPTER 2

 

Transformations: Generation and materialization of a surface

Juan López Coronel

The drawings show the work which started with the analysis of the spatial line that  
was  studied  by  the  Pythagorean  philosopher  and  mathematician  Archytas  of 
Tarentum.

This curve is the result of the intersection of two surfaces, one generated by rotation 
(torus) and the other by translation (cylinder)  that  use the same circumference as 
generative line. 

By  joining  two  sectors  of  this  intersection  it  is  possible  to  create  a  new  spatial 
generative line that is continuous and closed. This 3D curve allows us to rebuild both 
primitive surfaces.

(Figure 1)

(Figure 2)

Using this  generative line,  two spatial  surfaces  were created.  The first  one was a 
surface of rotation with homogeneous scaling of the generatrix. The second one used a 
directional scaling. 

(Figure 3)
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(Figure 4)

A mould was built with CNC milling to produce a prototype of the surface. The final 
object simulates the texture and appearance of rocks. This feature was obtained after 
several trials using different combinations of materials.

(Figure 5)

(Figure 6)

The proportions of the primitive surfaces were modified. The inner diameter of the 
torus  was increased,  establishing  a  relation  1:3  to  the generative  line,  in  order  to 
provide a structure with a central area which was more suitable and productive.

(Figure 7)

One of the materializations designed for this surface exhibits the fundamental  and 
constitutive scaling of the generative lines. However,  it  is  possible to heighten and 
make evident other spatial lines which can be found in the abstract surface.

CHAPTER 3

Archytas and geometry

Rosa Nina Enrich 

Introduction
No subject loses as much as

when it divorces from its history as Mathematics have
Bell [1]

 
The analysis of historical processes in the development of mathematics can show the 
way in which methods, ideas, concepts and theories of this discipline arise, how they 
are systematized and developed. It can be extremely useful to explore the beginnings 
of a concept, the difficulties that mathematicians were confronted and the ideas that 
emerged in dealing with new situations, the problems they solved, the area in which 
they were applied, the methods and techniques developed, how they forged definitions, 
theorems and proofs, the thread between them to build theories, the physical or social  
phenomena  they  were  explaining,  the  spatial  and  temporal  context  in  which  they 
appeared, how they evolved to its present state, how cultural issues were linked, the 
everyday needs they solved. In short,  to know (in the Kantian sense) the way from 
intuitions to ideas, and then to the concepts. Although this chapter is focused on the 
analysis the work of Archytas as a mathematician of ancient Greece, it seems very 
important to give a historical context by briefly describing three classical problems of 



geometry  that  marked  the  lives  of  ancient  mathematicians  (some  contemporary, 
others after Archytas). The quest for their solution generated many discussions among 
mathematicians throughout history.

They are: squaring the circle, the trisection of an angle and the doubling of the cube

The first was to find geometrically the measure of one side of a square depending on 
the extent of the radius of a circle so that its area is the same as that of the circle. It  
has been proved that this is unsolvable.

The second was to find the way to divide an angle into three equal parts using only an 
unmarked ruler and a compass. This task is generally impossible.

The third, was to find the measure of the edge of a cube so that its volume doubled 
that of another of known edge. Of all three problems this is the only one that arguably 
has  a  solution,  but  does  not  fulfill  the  requirement  that  it  be  buildable  only  with 
unmarked ruler and compass [1]. There are several solutions proposed in Classical 
Greece and the most prominent of them, as it was unusual for the time, is the one 
proposed by Archytas.

The three classical problems of Greek geometry had one thing in common: they could 
not be solved by unmarked ruler and compass and this was the great difficulty that 
determined the need to search for other means beyond those used so far. In fact, all 
three problems have no solution using unmarked ruler and compass. 

The  solutions  involving  marked  instruments  were  called  mechanical  solutions  [2]. 
Plato said that mechanical  procedures irremediably lost the most sensitive part of  
Geometry;  and we fully  share his  view.  This  is  because it  is  necessary to  solve a 
problem by means of a demonstration of its solution so that it can be said "This is the 
solution", because otherwise we would be talking only of verifications. We know that in 
the 5th Century (BC) Hippocrates of Chios made the first relevant contribution to the 
problems of squaring the circle and duplicating the cube. He also studied the problem 
of the trisection of an angle and although he found a direct way to do it, this way does 
not apply to any angle and therefore has no value as a general solution because it is  
not only particular but also mechanical. 

Of  the  three  problems  we  have  mentioned,  our  interest  here  is  on  the  third:  the 
doubling of the cube; and we shall analyze particularly the work of Archytas rescued 
by Eutocius in the 2nd century (AD).

 

Where history blends with legend about the birth of the problem

It is said that the origin of the doubling of the cube arose in the mid 4th century (BC),  
when the citizens of Delos appealed to the oracle at Delphi to learn how to contain the 
plague  invading  their  city.  The  oracle  replied  that  they  should  double  the  altar  of 
Apollo, which had the shape of a cube. This answer from the oracle is not surprising 
since there are already recorded problems about the size and shape of the altars in 
the early manifestations of Hindu literature, probably arrived in Greece from the hand 
of Pythagoras.

The fact that this problem had been addressed previously, may have its origin in the 
legend of King Minos who while visiting the construction of a tomb in cubic shape for 



his son Glaucus warns that it was small according to his expectations and says "Too 
small is the tomb you have marked out as the royal resting place. Let it be twice as 
large.  Without  spoiling  the  form,  quickly  double  each  side  of  the  tomb". This  idea 
contains an error, since doubling the sides of a cube results in a volume eight times 
the  original,  as  it  is  seen  in  Figure  1.  That's  how  this  became  a  problem  for 
mathematicians since then. 

The  legend  of  Minos  would  locate  the  statement  of  the  problem  in  the  period  of 
splendor of the Minoan era, roughly arround the year 1600 BC. 
  
Figure 1. The intuitive solution to double the edge of the cube shows how the volume is eight times the 
original.
 
From Ancient Greece, we must highlight three major attempts to solve this problem: 

- The one by Hippocrates reported by Archimedes in his book  On the Sphere 
and cylinder. It  was based on the determination of  two means proportional 
between a measure and another [4].He never got to formalize the solution. 

- The one by Menaechmus, who not only discovered conics but also studied a 
number of their properties, at least enough to provide two simple solutions to 
the  problem  of  Delos  by  means  of  the  intersection  of  an  hyperbola  and  a 
parabola.

- The  one  by  Archytas,  who  found  the  two  means  proportional  solving  the 
problem with three surfaces of revolution.

If Hippocrates reduced the spatial problem of doubling the cube to a metric problem in 
the plane, Archytas took it back into space (we have not found in the literature any 
references of why Archytas chose this kind of approach to solve the problem). 

They were followed by others, who tried to perfect the proposed solutions. 

Although many methods were invented to duplicate the cube and many remarkable 
discoveries appeared during the attempt,  the ancient  Greeks would  never find the 
solution that really wanted: one that could be done with ruler and compass. They could 
never  find  such  a  construction  because  it  can't  be  done,  as  we  will  justify  later. 
However,  there was no way they could  ever  prove such a result,  since it  required 
mathematical  concepts  that  went  far  beyond what they  achieved.  It  is  fair  to  say, 
however, that even though they could not prove that a ruler and compass construction 
was impossible, some of the best ancient Greek mathematicians foresaw that this was 
really impossible.

To understand the impossibility of the required solution we shall appeal to Modern 
Algebra, where the problem can be stated as follows: For the volume of a cube of edge 
"a" to be twice of that of another cube of edge "b" it must be verified that:

V a = 2·V b.

Since: Va = a3,  y    Vb = b3,

Then: a 3 = 2·b3

That is:  ·b.



The lack of a method to construct this cubic root with a ruler and compass is what 
makes impossible the solution they sought. 

However, since the time of Hippocrates it was known that the solution of the problem 
was to find two proportional means between two quantities "a" and "b" so that the 
volumes of cubes of sides "a" and "b" were on a 2 to 1 relation. 

Their aim was first to determine them and then demonstrate that it is possible 
construct them with ruler and compass.

Today, using modern algebra, we know that these proportional means are      and    , 
and so the proposal made by Hippocrates and taken by Archytas in his quest to prove 
their existence would be expressed like this:

1:  :: :  ::  : 2,

which is the same as:

 = = 

and the relationship between the volumes would be:

1: 2:: 2: 4:: 4: 8
which is the same as:

 = 

as shown in Figure 2.

Figure 2. Approximated construction of cubes of edges measuring 1,  ,  and 2, with volumes 1, 

2, 4 and 8 respectively.
 
In the second half of the seventeenth century and early eighteenth centuries, many 
mathematicians were devoted to finding ways to double the cube. Among them were 
Descartes, Fermat, Huygens, Viviani and Newton.

Descartes considered not only the problem of finding two proportional means, but also 
came to consider four. Fermat went further and considered certain classes involving n 
proportional  means.  Viviani  solved  the  problem  with  the  help  of  a  second  order 
hyperbola. Huygens, in 1654, suggested three methods of solution. Finally,  in 1707, 
Newton suggested several methods but chose one in which uses Pascal's snail (the 
cardioid is the best known of this family of curves). 

This brief historical background to the problem allows us to understand the complexity 
of some mathematical problems which appear to have simple solutions. 

Here is one of the keys to those who are enthusiastic about the scope of this discipline:

In mathematical terms, intuition can be a good starting point. But do not forget that 
Mathematics is the discipline of demonstrations. Only that which can be demonstrated  
constitutes a step that allows raising up to the next. 



Highlighted this  important  issue,  we  devote  ourselves  to  the  analysis  of  Archytas' 
solution to the problem of doubling of the cube.

 
 
 
Archytas and the doubling of the cube
 

About Archytas

Archytas of Tarentum (about 428-350 BC) was a mathematician, philosopher and 
politician who developed his activities in the first half of the fourth century (BC), 
contemporary with Plato. He was one the last famous figures of the early era of the 
Pythagoreans. It was the first to identify Logic (closely associated with Arithmetics), 
Geometry, Astronomy and Music as the canonical sciences, which became known as 
Quadrivium in the Middle Ages. These sciences added to Zeno's Trivium (Grammar, 
Rhetoric and Dialectics) were the seven liberal arts. (Boyer, 1986)

We say this to stress the importance of his career, not well known outside the field of  
Mathematics.  His research does not come to classrooms as frequently as those of 
other Greek mathematicians such as Pythagoras, Archimedes, etc. The problem is that 
very few of his original works, with an air of authenticity, have been recovered. Two 
remarkable of his works are: the reports of his solution to the doubling of the cube, 
resulting in the discovery of a significant curve known as Archytas' Curve (Ferreol, R.), 
and  his  work  on  musical  harmony  (Huffman,  C.)  ,  which  marked  an  important 
contribution to the musicians of his time.

 
About the proposal to the doubling of the cube 

Archytas of Tarentum provided a solution using a geometric construction involving a 
cylinder, a torus and a cone of revolution (see Figure 4 b).

Remember that, as noted above when we told the story of Delos, the intuitive solution 
to doubling the cube was doubling its side. However, if this is done, you get a cube with 
a  volume  8  times  the  volume  of  the  first  cube,  as  we  noted.  This  allows  us  to 
understand that the side that doubles the volume of a cube of side one must have a 
measure between 1 and 2. Hence his work starts with the conviction that the solution 
to doubling the volume of the cube means finding two proportional means between b = 
1 and a = 2  constructible  with  ruler  and compass so that  with the least  of  these 
measures could serve as the edge of a cube of volume equal to 2.One might ask: why 
two proportional means? For if we see that the volumes for the cubes of edges 1 and 2  
are 1 and 8, then it is possible to find among them two proportional means that allow 
us to form the sequence 1, 2, 4, 8 which is a geometric progression in which 2 and 4  
are the proportional means between 1 and 8. This is the case of the volumes. For the 
edges, the problem is reduced (is reduced?) to find two proportional means between 1 
and 2, of which the smallest corresponds to the edge of the cube of volume 2. This is  
the desired solution. 



The remarkable thing about Archytas's reasoning is that it relied on a construction 
made  in  the  domain  (then  considered  superior)  of  curved  surfaces.  The  result  is 
consistent  with  the  discovery  of  the Pythagoreans,  of  Plato  and Theaetetus  of  the 
construction of the five regular solids from the sphere. These were splendorous times 
for Geometry at the time.For the first time,  there were reported three-dimensional 
constructions represented in the plane and they were given a tremendous value. This 
is perhaps the reason why Archytas sought a solution to the problem in this area. 

We begin the study by describing the characteristics of the three surfaces of revolution 
involved.  And we have  emphasize  that  the  basis  of  the  solution  is  to  assign  to  a  
diameter and to a rope of the same circumference measures whose ratio is 2:1. This is 
seen in Figures 3 and 4 where we have:

1) A torus generated by a circle of AC diameter of length 2, which revolves 
around a coplanar line and tangent to it in A. Therefore, the generated torus has 
zero internal diameter, this means no passing space.

2) A right cylinder of diameter AC, with its axis parallel to the axis of the torus 
and moved a distance AC/2 from it. Note that the generating circle of the torus 
has the same diameter as the guideline of the cylinder and are in perpendicular 
planes.

 
Figure  3.  Intersection of  the  torus and  cylinder.  We see part  of  Archytas'  Curve,  the  result  of  the 
intersection between the two surfaces.

 
3) A section of right cone whose axis contains AC. Its generatrix is determined 
by  the  direction  of  the  segment  AB.  This  segment  is  a  string  of  the 
circumference guideline of the cylinder and has length 1. The extension of the 
segment AB cuts in point D to the tangent to the circle ABC drawn at point C. 
The triangle ACD is determined so that as it is rotated around its side AC it 
generates the right cone sector involved in construction (Figures 4 a and 4 b).

 
Figure 4 a. Intersection of the torus and cylinder. Details on the generation of the cone.
 
Figure 4 b. Intersection of the torus, cylinder and cone.

 The  surface  of  the  cone  has  4  points  of  intersection  with  the  Archytas'  Curve 
determined by the intersection of the torus and the cylinder. Figure 4 b we see the 
point P, which is one of those four points, corresponding to the represented quadrant.
 
Figure 5. Point P becomes the starting point for the construction of a series of triangles, similar to each 
other. They allow to find the two proportional means we were looking for.

 
Steps of the Construction. Determination of the proportional means

- Let APC' be a position of the generating circumference of the torus, with APC' a 
triangle inscribed in it, therefore, it is rectangle in P.

- Let M be the point where the cylinder's generating line that passes by P cuts the 
circle ABC.



- Draw the section of the cone with a plane perpendicular to its axis and containing 
the point B. BQE is the circumference obtained. The point Q is the intersection of 
the segment AP with the circumference.

- Points M and N are the perpendicular projection of the points P and Q on the 
plane ABC.

Then:
QN·QN = BN·NE = AN·NM (Euclid III.35 [5])

Where it results that AQM is a right angle. But APC' is also a right angle, hence MQ is  
parallel to C'P.
 
From Figure 5 let's extract the right angled triangle APC'. 

Figure 6.
 
Since all right angled triangles in Figure 6 are similar, because their angles are respectively equal, it 
follows that:

 
But AQ = AB and AC'= AC where it follows: 
 

 
This means that AB, AM, AP, AC are in continuous proportion so that AM and AP are the 
two proportional means we were looking for. In particular, the measure of AM 
coincides with the edge of the cube whose volume is twice the volume of the cube of 
edge AB. [6]
 
This shows that the solution exists if we are not imposed with the restriction to find AM 
constructing only with a ruler and a compass. [7] 
 

Short Conclusions

Throughout history, the solution has been sought under the conditions imposed by the 
Geometry  of  Classical  Greece. Therefore,  the  solution  given  by  Archytas  does  not 
satisfy  these  conditions.  However,  it  is  undeniable  its  merit  implying  an  amazing 
creative capacity to produce a mathematically correct solution at that time.
So  are  the  geniuses... beyond  their  time!  We,  the  common people,  should  content 
ourselves just understanding their reasoning incorporating it as new knowledge to our 
collection.
 
Notes
[1] Constructions with a ruler and a compass are made through a finite number of steps. They are based 
on the use of an ideal compass and an unmarked ruler. They were the basis to construct the forms in 
Greek Geometry.



[2] An example of mechanical solution is the division of a segment into equal parts with a marked 
ruler. However if it is done with unmarked ruler and compass it is perfect, geometrically speaking.
[3]  Remember that  in Mathematics  a  proof  is  a process by which,  through a series of  logical 
reasonings, you come to establish the truth of a proposition or theorem from a certain hypothesis.  
But a verification is to see that a certain hypothesis is true for cases where it is verified and one  
can not be sure if it remains true for any case.
[4] See Appendix 1.Proportional means between two numbers.
[5] In Appendix 2 we transcribe Proposition III.35 of Euclid, extracted from: 
http://www.claymath.org/library/historical/euclid/ , visited on 04/16/1910.
http://rarebookroom.org/ visited on 12/04/2010.
[6] See Appendix 3.
[7] See Appendix 4.
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APPENDICES
 
Appendix 1: Proportional means between two numbers.
Given two numbers a and b, it is possible to find a third number x, called the proportional mean between 
a and b if it is verified that:  

a: x:: x: b
(read as "a is to x as x is to b")
This is a continuous proportion, expressed in algebraic language as follows:  

a / x = x / b
 
If between two numbers a and b can be two others x and y such that:

a: x:: x: y:: y: b
wich is expressed algebraically as: 

a / x = x / y = y / b
Then x and y are two proportional means between a and b.
 
Example: 1: 2:: 2: 4:: 4: 8 written algebraically: 1 / 2 = 2 / 4 = 4 / 8. Then 2 and 4 are "proportional 
means" between 1 and 8.
 
 
Appendix 2: Proposition of Euclid used in the development of the work
Proposition III.35: If in a circle two straight lines cut one another, the rectangle contained by the 
segments of the one is equal to the rectangle contained by the segments of the other.
 
Appendix 3: On the similarity of right angled triangles
Two right angled triangles are similar when their two acute angles are equal. 
Remember that the proportionality between the sides is determined from being opposed by equal 
angles.

In this case QM//PC' and PM//QN, as it was shown.

http://www.mathcurve.com/courbes3d/archytas/archytas.shtml
http://rarebookroom.org/
http://www.claymath.org/library/historical/euclid/


This means that all right angled triangles seen in the figure are similar and so their sides are  
proportional.
 
Appendix 4: Demonstration of the impossibility of doubling the cube with ruler and 
compass.+

In the nineteenth century, Gauss concluded that in reality this is an unsolvable problem, but he did not 
prove it. As we already mentioned, the lack of solution comes from the demand to solve this problem 
using only unmarked ruler and compass.

It was Pierre Wantzel, from France, who in 1837 finally made public the corresponding theorem, in an 
article  entitled "Recherches sur  les  Moyens de  Reconnaître  si  un Problème de Géométrie  Peut  se  
Résoudre  avec  la  Règle  et  le  Compas"  ("Researches  on  how  to  recognize  whether  a  problem  in  
Geometry  can  be  solved  with  the  ruler  and  the  compass"). It  was  published  in  the  Journal  de 
Mathématiques Pures et Appliquées.

He shows that the impossibility of doubling the cube with unmarked ruler and compass derives from 
another impossibility: to build with these instruments of classical Greek geometry the cubic root of any 
rational number.

http://www.uam.es/personal_pdi/ciencias/barcelo/historia/Gauss.pdf . Pp. 14 and 15. Visited on 
24/04/2010.

CHAPTER 4

 
Simulacra of Nonorientable Surfaces—Experienced through Timing [1]

William S. Huff

Properties of the Nonorientable Surface

A “Möbius strip,” identified in the mid-19th century by the mathematician whose name 
is attached to it, is frequently depicted in dictionaries. As the tradition about it goes 
(compared to a strict topological definition), a Möbius strip or band has one side to its 
surface and it has one edge—unlike the surface of a cylindrical strip, which has two 
sides (an outer side and an inner side) and two edges. Attention has to be given to the 
differentiation between two words: “surface” and “side.” 

The marvelous property of a Möbius’s surface is called  nonorientability. It has been 
pointed out that “the sides of [a closed surface as a cylindrical strip] could be painted 
with different colors to distinguish them” and that, since “the surface [of the cylindrical 
strip]  has  boundary  curves,  the two colors  meet  only  along these curves”  so  that 
“anyone who contracts to paint one side of a Möbius strip could do it just as well by  
dipping the whole strip into a bucket of paint.” (Newman 1956: 595) 

Fact, however, intrudes: A Möbius, in its absolute, is two-dimensional. It is an abstract 
concept to be imagined. Unlike the face of a cube, it can neither be viewed nor touched
—nor can it, in reality, be painted. When a Möbius is modeled with a strip of paper,  
substance is involved. That piece of paper has a measurable thickness; therefore, the 

http://www.uam.es/personal_pdi/ciencias/barcelo/historia/Gauss.pdf


concrete  object  takes  on  three-dimensionality.  Such  a  material  object,  meant  to 
represent a Möbius, actually  has two surfaces—the specific surface of interest,  the 
width and length of the strip of paper, and a consequent thin but measurable surface, 
the thickness of the paper itself. Furthermore the materialized object has two edges, 
which border the two surfaces. Though the materialized Möbius is a deception of sorts
—that is, it is a simulacrum—it remains an intriguing object, which has been varyingly 
explored and aesthetically exploited by such an artist-sculptor as Max Bill. 

If the paper Möbius’s thickness is expanded to correspond to the width of the strip, it 
becomes a twisted, faceted torus (with a square cross-section). Since, as a thin piece 
of paper, the object at hand had been given a 180° twist, the object, as the four-faceted 
fattened torus, retains the 180° twist—and the object can, consequently, be painted in 
two colors.  In  order to  occasion a square cross-sectioned torus,  allowing only one 
surface to paint, the twist needs to be 90° or 270°—or n90°, where n is odd.

An Impertinent Juxtaposition

It is to be recognized that the Möbius—even though, as a rigorous topological artifact, it 
has zero thickness—can be deformed to any length (and relatively to any width, as 
well)  and that,  if  it  is  greatly  lengthened,  it  can be imagined to  tangle into  snarls. 
Furthermore, its single edge can be imagined to be smooth or jagged or a combination 
of both. However, if a concrete Möbius strip is fashioned with a suitably trim and firm 
piece of paper and kept within certain proportions—say, a width of one unit to a length 
of seven—it will physically take a compact shape that is textbook familiar.

Associating  isometric  symmetry  with  a  topological  artifact  might  seem  to  be  a 
disciplinary contrariety, but wondering what kind of symmetry—if any at all—a Möbius 
strip  might  assume should not be ruled out of  the bounds of  a designer’s  natural 
curiosity.  I  put  this  question to  one of  my basic  design classes,  and a  number  of 
students  quickly  came  up  with  the  answer:  The  Möbius  inherently  possesses  the 
potential of twofold rotational symmetry. 

Due to the frequent orientation of a conventional depiction of the “Möbius strip,” as it  
appears in  Webster’s Collegiate Dictionary (9th ed.), the twofold rotational axis is not 
visually obvious; it can, nonetheless, be picked up by an informed second look. In the 
depiction in Cundy and Rollett’s, Mathematical Models, the twofold axis is more clearly 
evident.

(Figure 1)

These two depictions aside,  the twofold  rotational  property should  be conceptually 
obvious in consideration of the 180° twist  that is given to a longish strip of paper  
before it is joined into the mode of the Möbius. With that question, so readily answered, 
my students were next set to the task of exploring the plastic potential of Möbius-like 
figures, as well as faceted twisted tori. Despite the absolute two-dimensionality of the 
strictly  authentic,  topological  Möbius  surface  (i.e.,  zero  thickness),  its  essential 
occupation of three-dimensional space was recognized as an imperative condition of 
the students’ studies of nonorientable surfaces. Some extraordinary 3-D objects have 
resulted.

A clarification is in order: My design students were not urged to pursue new geometric 



principles, but to ponder existing ones. For example, in pondering the twisted, square-
sectioned torus, it could be comprehended that, while such a torus—that is, a toroidal 
tube  with  zero-dimensional  thickness—can  have  one  continuous  surface  on  the 
outside, if given the appropriate twist, it would, correspondingly, have one continuous 
surface inside. Such objects must, then, not be a genuine nonorientable surfaces: As 
surfaces of three-dimensional objects, they do  not have the essential nonorientable 
property that the surface of the  Klein bottle has. It  might,  then, be said that  many 
objects that were designed in my studio skirted the fringes of nonorientable surfaces. 
This  investigative excursion,  did,  however,  throw light  on the real  geometry of  the 
material Möbius strip, as covered above. 

(Figure 2)

The Experience of Timing

On previous occasions, I gave oral and written accounts of a type of design, regularly 
assigned in my basic design studio—the parquet deformation—which disposes time to 
participate  as  an  integral  third dimension,  thus  dynamizing the  two-dimensional 
spatial content of the design. Commentary on the aesthetic potential of the parquet 
deformation was presented at  the Katachi  2  conference  (Huff  1994:  219-222),  and 
commentary on its  geometric  requisites  was presented at  the SEMA 4 conference 
(Huff 2003: 9). I liken the parquet deformation to a remarkable art form, the Chinese 
handscroll,  which,  in  its  most  exceptional,  but  younger  genre,  the  landscape 
handscroll, goes back a thousand years. Time unfolds as the scroll is synchronously 
unrolled and rolled—pleasurable frame by pleasurable frame—not dissimilarly to how 
music  flows.  Time  is  engaged,  however,  in  a  different  manner  in  respect  to 
compositions whose three dimensions are all spatial.

During my early days of teaching basic design, I was well connected with many faculty 
members in Josef Albers’s Department of Fine Arts at Yale, among whom was sculptor 
Erwin Hauer. A central precept of Hauer’s teaching dwelt on the experiential potence 
of  sequential  events—which he called  timing.  Timing is  transacted by the viewer’s 
walking around a plastic  object  or by the viewer’s otherwise successive change of 
position in respect to the object. Architecture cannot be fully experienced unless the 
viewer walks, not only around, but through it.

Working with a professional photographer, I recorded my students’ best results from 
the  several  assignments  that  required  three-dimensional  modeling.  Though timing 
was at the top of my students’ stipulated considerations as they worked on studies of  
nonorientable  surfaces  and  the  other  3-D  topics—originally,  perhaps,  neither  the 
students, the instigators of the designs’ essential formulations, nor I, the critic of the 
designs’  aesthetic  developments,  were  totally  appreciative  of  the  whole  gamut  of 
timing relationships that  chanced in the best  of  these objects:  When,  however,  the 
objects were once again given the scrutiny of the keen eye—meticulously freezing and 
capturing  remarkable  camera  positions—the  complete  range  of  the  metamorphic 
magic became evident.

A collection of timing sequences of eight studies of nonorientable surfaces, selectively 
registered by the camera at exceptionally diverse angles of vision, are presented here.

(Figure 3 to 10)



Notes

[1] The text of this chapter is a revised edition of the paper presented at the  V National Congress of  
Sema, in Resistencia,  Chaco in the year 2005. Some concepts of the original translation of Marcelo 
Coccato were sustained while others were changed in this extended version. 

[2]See an  article  that  appeared  eight  years  after  my basic  design students’  first  engagement  with 
concretized Möbius bands and twisted prismatic tori: Martin Gardner, “Mathematical Games: A Möbius 
band has a finite thickness, and so it is actually a twisted prism,” Scientific American 239 (August 1978) 
18-24.
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MARGINAL NOTE

Jewelry based in Möbius stripes 

Darío Bessega

The Möbius strip as spatial surface does not have an internal or external face, nor 
front or back, because these properties are reversed along the stripe. 

It is evoked in psychology, philosophy, art and design fields as a concrete starting point 
to understand the concept of infinity, because its representation alludes to continuity in 
a circular course, where the departure point is also the end.

My intention to use it to design objects has to do with an alternative view of geometry. 
In rings and pendants the strip solves functional requirements of each object, through 
its particular features: encircling the finger in the ring and providing a hanging surface 
in the pendant. The strip does not appear as an icon or a decoration applied on the  
object  but  the  object  is  designed  like  a  strip,  alluding  to  the  detour  and  not 
emphasizing a central place.

While the ring is used, the section of the strip that corresponds to the body of the ring 



is  perceived  as  an  “internal”  face  because  it  remains  hidden.  The  half  turn  twist 
which identifies the Möbius stripe, goes from the end of the body towards the front, 
and appears as the interior of each side integrating itself to the other side, which is 
perceived as the “outside” or visible face of the piece. 

In general,  the use of the pendant suggests the presence of a rear side that rests 
against  the chest.  In  the pendant design I  suggest the rupture of  this  situation by 
generating an object without rear side, or with interchangeable front and back sides. 

So, the object has more possibilities in its way of use, because it allows that its two 
“faces” that can be chosen as the visible face. Seeing the object from any of its fronts, 
the back side appears. Front and back dialogue with each other through the continuity 
of the strip.

CHAPTER 5

Polyhedra: the source for twisted loop sculptures

Robert A.Wiggs

Some  scholars  who  study  polyhedra  focus  primarily  on  polygon  faces  and  their 
structural relationship to each other. As we know, all polyhedra are named for the 
number of polygon faces in their anatomy. For example, the regular tetrathedron has 
four trigonal faces, the regular dodecahedron has twelve pentagonal faces.

Models of 3-D polyhedra are generally constructed of opaque material. This presents a 
viewing problem because no more than one half of a 3-D polyhedron may be seen on 
any viewing axis.  There are many interactions  that  cannot  be seen in  the opaque 
models. The regular octahedron below demonstrates those interactions. When viewed 
as transparent wire model, the hemispheres of the polyhedron can twist and untwist 
in relation to each other. Some can be seen twisting on one viewing axis and some 
twisting on two axes. None of this interaction can be observed in opaque form.

(Figure 1)

In figure 1A the opaque model octahedron is composed of faces, vertices and edges. In 
its 4-fold mode, there is no twisting that can be seen on the viewing axis. In figure 1B  
the transparent model of the same octahedron has the structural components of an 
equatorial wavy ring and trigonal caps that are twisted in relation to each other on its 
3-fold viewing axis. Figures 2A and 2B are exo and endo models of the transparent 
octahedron  without  faces,  vertices,  and  edge  lengths.  Figures  3A  and  3B  are 
curvilinear  models  of  the transparent  octahedron without  faces,  vertices  and edge 
lengths.  The  coordinates  for  2A,  2B,  3A,  and  3B  are  the  same  as  the  regular 
octahedron,  however,  they  circumnavigate  continuously  around  their  spatial 



coordinates.

(Figure 2)

This sculpture, carved in wood, has a 3-fold twist viewing axis. It is composed of twists 
and hyperbolic saddle surfaces between the twists.

Research by  the  author  has  led  to  the  discovery  of  the  ninth  self  all-space  filling 
prismatic  polyhedron  he  named  “Twist  Octahedron”.  This  research  generates  also 
sixteen families of polyhedral lattices and is the source for many pieces of twisted loop 
sculpture.

MARGINAL NOTE

Patricia Muñoz

Claudio  Guerri  and  William  Huff  introduced  me  to  Robert  Wiggs  and  his  son  and 
permanent collaborator, Calvin. So, I got to know these marvelous spatial lines, which 
no one can doubt they are 3D configurations, even if they are composed by arcs of 
circumference.

It was a challenge to build them. A fruitful and intense exchange of emails, carrying 
words, sketches and papers allowed us to produce these images that we can share 
today. I was fascinated by Robert Wiggs´ understanding of space, of the lines and the 
surfaces he uses in his sculptures, lacking the digital instruments of visualization and 
analysis that has made our task considerably easier.

Exostructure of the Octahedron

Figure 1. Exostructure in the octahedron, standing in a triangular face, twisted loop with and without the 
polyhedron. The section that is parallel to the base, at half height, defines a hexagon in the octahedron 
that divides the spatial lines in its planar parts.

Figure 2. Twisted loops of the exostructure of the octahedron. A vision in the octahedron and the exo-
structure on its own. The lateral projection evidently shows its continuity. 

Figure 3. Polyhedron materialized through its edges and spatial line built using arcs of circumference 
inscribed in the triangular faces. 

Endostructure of the Octahedron

Figure 4. Endostructure: Structure with line and with the polyhedron.

In order to define the structure, the edges of the triangular horizontal faces (the one 
resting  on  the  floor  and  the  one  on  top)  are  connected  inside  the  polyhedron  by 
straight lines that  touch a hexagon contained in the midplane.  The twisted loop is 
composed  by  arcs  of  circumference  inscribed  in  the  triangles  of  the  structure, 



connecting the superior and the inferior sectors with arcs that lie on planes defined by 
the structure. 

Figure 5. Arcs of circumference that compose the spatial line

Figure 6. Endostructure: spatial line with structure and with the polyhedron

Figure 7. Line of endostructure and twisted loop

Figure 8. Simple and double twisted loops on the exo and endostructures of the tetrahedron.

For more information on this topic and an extended explanation we suggest the visit of  
the site http://wiggspolysutures.com/

http://wiggspolysutures.com/


PART 2. The research project

CHAPTER 6

Spatial lines in projecting activities: Graphic Design 

Nora Pereyra

It seems to make no sense at all to talk about Spatial Lines in graphic design, but it is a  
recurrent subject in current designs not only in the branding but in editorial, web or 
multimedia design as well. 

The issue is that graphic designers think more on images, movement, interrelations, 
chromaticity, textures than in the generative process that allows the concretion of a 
line, considering both plane and spatial instances, or its controlled transformation of 
attributes  involving  families  and  series  of  figures.   These  topics,  together  with 
symmetry  parameters  and  the  above  mentioned  inter-relationships  are  used  to 
materialize  current  designs.  They  can  be  transformed,  leaving  aside  the  static 
characteristics of other periods.

Digital  media  and  the  wide  range  of  variations  that  software  enables,  make  the 
presence of spatial lines possible in almost all graphic interventions, no matter if the 
designer  knows about  its  generation and controlled  transformation.  In  most  cases 
what  the  designer  is  looking  for,  I  dare  to  say,  depends  whatever  software  and 
imagination can provide, together with aesthetic parameters. It is conditioned too by 
the perceptual  proposal.  It  could  be said  that  years  of  acquired  expertise  through 
professional training and practice guide the decisions that finally define a design.

It is obvious to me, but in a world where the dominance of image is support for a great  
deal of social relations, the complexity of symbolic implications demands an image 
development according to these conditions. For instance density, suggested solidness, 
dynamism,  network  communication  or  interrelations  are  based  on  corresponding 
images that permanently grow or mutate. These modifications are usually understood, 
among others, as adaptations, revisions, rapid comprehensions that find their graphic 
expression, where spatial lines take an important place. Regarding their manipulation, 
the chance to work with them and their transformations optimizes system variables.

Perhaps this presentation can be judged as arbitrary or capricious; yet for a long time 
and according with current requirements, symbolic value is the one that emphasizes 
and surpasses the communicational level of a graphic product that exceeds what is 
merely referential or at least, it does so once it has reached the visual consumer. I 
have used this  term,  not  in  a naïve way because at  present,  we all  are voracious 
consumers  of  images  and  visual  information,  whether  we  approach  them  to 
deconstruct and elaborate them, to discard or consume them as merchandise with use 
value.

Up to this point, we can begin to see some uses of spatial lines on graphic applications 
in different kind of products. Materialization can be considered representational as far 



as it reproduces something that exists or that suggests a future existence in objects. 
Also, as elements of direct materialization from its drawing. 

Spatial Lines in Design products/presentations

In most cases, the way of dealing with spatial lines derives from overlapping conic 
curves, but mainly they are obtained from the sphere: spherical or conical helixes,  
cichloids and spirals  projections  and/or  their  transformations.  So,  we have simple 
applications, as the one shown in figure 1: information graphics; in figure 2: Vangelis  
compact  disc  cover  –¨spiral¨  is  its  name  –;  or  figure3:  one  of  many  alternatives 
designed by Garrido-Reissis studio for a logo.

The use of digital technologies expands our vision and allows –as in any design as 
well,  the  establishment  of  new  visual  paradigms:  more  sophisticated,  with  high 
aesthetic  level  and  various  alternatives  of  interpretation.  Such  as  a  Neville  Brody 
poster that can be seen in figure 4 and the front and back cover of Why Not Associates  
Studio  book  in  figure  6.  We  can  find  major  complexity  and  linear  intersections  in 
Neville Brody’s type in figure 5, or in Estudio Cabina website, figure 7, which create 
spatial surfaces.

Of course, these are planar representations of spatial situations with different degrees 
of subtlety. Strong directionalities can be seen; overlays and transparencies in addition 
of a wide range of chromatic and contrast variables.

Figure 1 Information graphic. http://www.formlessmountain.com/aqal.htm

Figure 2: Vangelis CD cover 

Figure 3: Garrido Reissis Studio.

Figure 4: Neville Brody. Fuse 98. Poster

Figure 5: Neville Brody. Made in Clerkenwell. In the site: researchstudio.com

Figure 6:  Why not Associates. Front and back cover of their book Why Not. 1998

Figure 7: Estudio Cabina. Website. Background patterns. www.espaciocabina.com.ar

Frequently,  materializations  are  not  restricted  to  lines  and  rarely  describe  their 
morphogenesis, but refer to objects, as the example on Vangelis CD cover. But, as the 
other  illustrations  show,  lines  concrete  virtual  situations,  abstract  drawings  that 
provide spatial effects to the graphic space treatment while enhancing the value of the 
graphic sign itself. This kind of concretions  is usually associated to high technology, 
up–to-date,  modernity,  speed  or  efficiency  conditions.  They  are  omnipresent  in 
complex graphic systems solutions. 

It is relevant to note that, in general, spatial lines coexist with flat graphic areas, where  
text blocks appear, integrated and understood as natural. Imagination and new visual 
and  interactive  paradigms  encourage  the  simultaneous  appearance  of  many 
representational modes that are read without contradiction. Such is the situation of 
real-time  movement  on  websites,  diverse  options  at  every  click  or  the  volume  of 
architectural  and  environmental  graphic  applications,  in  addition  to  those  already 
explained.

These statements do not close the treatment of spatial lines in graphic design. It has 
just been one possible approach in the world of graphic design shapes.

http://www.espaciocabina.com.ar/
http://www.formlessmountain.com/aqal.htm


CHAPTER 7

Spatial lines in projecting activities: Industrial Design

Patricia Muñoz

Spatial  lines  have  found  different  ways  of  finding  their  place  in  design.  Their 
possibilities  of  implementation  in  products  are  linked  to  the  development  of  the 
necessary  technology  for  their  materialization.  While  analyzing  industrial  design 
products we have noticed three different modes which we will proceed to describe. 
However we want to remark that while we were carrying out this research we were 
able to verify the little  diffusion of industrial design objects made in Argentina. We 
hope  this  situation  will  change  soon  because  we  have  much  to  learn  from  our 
professional local production.

The different approaches are:

- Materialization of the line

- Spatial lines as borders of bigger surfaces

- Spatial lines as edges

Materialization of the line

The more numerous strategies are linked to  tube bending, working with its total or 
partial curving. The production of planar parts that are welded to construct spatial 
lines contributes  to  its  extended distribution.  Classic  examples  of  this  use are the 
Wassily chair (1925) designed by Breuer, the Cantilever chair (1928) designed by Stam 
and  the  Cesca  chair  designed  by  Breuer  (1928).  Among  local  production  it  is 
remarkable the structure of the BKF chair (1938) designed by Bonet-Kurchan-Ferrari 
Hardoy and the W chair,  designed by César Janello (1946). In this furniture, spatial 
lines  are conformed by  straight  tubes  connected  with  curved sectors  that  provide 
continuity.

Figure 1. Spatial lines materialized as structures of seating furniture: Wassily chair (Breuer 1925), Cesca 
chair (Breuer 1928), BKF Chair (Bonet, Kurchan, Ferrari Hardoy 1938) and W Chair (Janello 1946)

There  is  another  mode  of  materializing  them,  such  as  the  Littlebig  Chair  (2006) 
designed by Jeff Miller, which highlights the line, while disturbingly separating it from 
the  body  of  the  chair.  This  strategy  makes  more  evident  its  three  dimensional 
character.

Figure 2. Spatial line as structure and handle of the Littlebig Chair, designed by Jeff Miller for Cerrutti  
Baleri. Photograph of Ezio Manciucca

If we think on the line in a more perceptual than geometrical way, we can consider the 
Leaf Lamp (2006), designed by Yves Béhar, as the concretion of a spatial line. One of 
the dimensions prevails over the other two, and the detail of the central discontinuity 
emphasizes this interpretation. 

Figure 3.  Spatial  line  materialized by  curved areas  in  the  Leaf  Lamp,  designed  by  Yves Béhar  for 
Herman Miller



Another way of using these shapes in products is through the connection of planar 
fragments, such as the system A3, designed by Asymptote, in which the edges of the 
screens –planar lines – define spatial  lines in their  combination.  There is  material 
discontinuity  among  the  parts,  but  the  morphological  treatment  produces  a  clear 
comprehension  of  the  line  continuity,  as  it  can  be  seen  in  the  upper  edge  of  the 
workstation shown in Figure 4.

Figure 4. Spatial line produced by the combination of planar parts in A3 System, designed by Asymptote.

Spatial  lines  can  also  appear  as  units  that  create  a  bigger  surface  through  a 
systematic constitution, such as the helices that materialize the cylinder of the base of  
the Spin Table, designed by Escalona. 

Figure 5. Spatial lines as units of a systematic constitution in the base of the Spin Table, designed by  
Joel Escalona

At this point it is necessary to include further explanations. According to the Doberti´s 
System  of  Figures,  the  shapes  that  belong  to  this  typology  should  be  continuous. 
However, some concretions can be understood as a continuous spatial line even if they 
present geometric discontinuity of curvature. For instance, the Zig-zig chair (2007) of 
Michael Malmborg clearly shows this tension between the continuous path and the 
interruptions provided by the changes in directions. The square section makes these 
twists more evident. In addition, in two of the turns, there is a separation of the soft 
and hard zones of the object. 

Figure  6.  Discontinuous  spatial  lines,  of  square  section,  in  the  Zig-zig  chair,  designed  by  Michael  
Malmborg for Lyx

Spatial lines as borders of bigger surfaces

Spatial lines can also appear in products as boundaries of sectors of bigger surfaces, 
for instance the headlights in cars, which are strongly defined by the shape of their 
borders. The morphological treatment of the body of the car influences this definition.

Figure 7. Vehicles with different limiting line of the headlights through spatial lines

In addition, these shapes can indicate discontinuities in the same surface, to organize 
the  disposition  of  controls  in  an  instrument  panel,  or  to  define  functional  areas. 
Different uses can be combined in the same product,  as in the lid of the container  
shown in Figure 8, whose edge and whose opening area are defined by two different 
spatial lines.

Figure 8. Two spatial lines, one as edge of the lid and another indicating the opening area.

Another clear example is the Aspen Friendly nebulizer (2002) created by Punta Diseño, 
that shows a limiting spatial line between the transparent lid and the case that plays  
an important role in the design project.

Figure 9.  Spatial  line  as  border of  the transparent  lid  of  the case of  the Aspen Friendly  nebulizer,  
created by Punta Diseño

An interesting example of the use of these lines as discontinuity between surfaces is 
the  Miss  washbasin,  of  Meneghello  Paolelli  Associati,  which  breaks  the  traditional 
conception  of  sink  and  pedestal,  integrating  them  in  a  different  way,  keeping  the 
opposition front-back. The shape is geometrically and materially continuous even if 
perceptually two different spatial surfaces are identified, limited and simultaneously 



connected by the spatial line. 

Figure 10.  Spatial  lines  as  limit  between surfaces in  the  Miss  washbasin,  designed  by  Meneghello 
Paolelli Associati 

Spatial lines as edges

Spatial surfaces are limited by plane or spatial lines. There are diverse products that 
highlight this feature. Other objects are full or partial materializations of helicoids and 
Möbius bands, whose edges are clearly defined. 

In  this  group,  among the national  production,  we can include the Placentero Chair 
(2006), designed by Diego Battista[2]. The spatial line lies on a sphere and determines 
the discontinuity between the rigid shell and the padded seat.

Figure 11. Placentero Chair, designed by Diego Battista

Spatial lines can be recognized even if they are made of small  segments,  such as 
Marco  Dessí´s  radiators  [3].  We  clearly  perceive  these  lines  by  the  continuity  of 
direction of the thickness of the rotated square components.

Spatial lines and digital fabrication

Digital fabrication systems enable the materialization of very complex shapes. We can 
find spatial lines, conforming objects with variable thickness, contacts and divisions as 
in the Edge pen [4], designed by Lovegrove. This can be appreciated too in different 
lamps manufactured by 3D printing, such as the lines of Bathsheba Grossman’s design 
Flame, MGX.

Figure 12. Flame.MGX lamp produced by MGX by Materialise, designed by Bathsheba Grossman

Some conclusions

Throughout  these  observations,  the  presence  of  these  shapes in  Industrial  Design 
objects is clearly noted. In different manners, they are part of our everyday context. 
They are complex forms, which speak of three dimensions using a minimum amount 
of material and they make evident the treasures and the paradoxes of their features.

Ezio Manzini (1993) states that design is in the meeting point of what is thinkable and 
what is possible. The progress in the capabilities to control, model and visualize these 
shapes promoted new ways of understanding them. The technological advances allow 
new materialization alternatives. However, the acknowledgement of morphogenerative 
strategies  is  equally  important.  It  enables  innovative  explorations  in  applications 
beyond  what  is  already  known,  making  the  project  with  spatial  lines  possible,  
surpassing the forcefulness of their concretion.  

Notes

[1] It is part of the Argentine Industrial Design Collection of the Museum of Modern Art of the City of 
Buenos Aires

[2] First price in the "Industrial Design" category of the contest Innovar 2007, organized by the Ministry 



of Science, Technology and Productive Innovation

[3] The radiators can be seen in www.marcodessi.com/ visited 30/04/2010

[4] http://www.unicahome.com/products/small/35548.8F66FF31.jpg visited 30/04/2010
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CHAPTER 8

The research project

Patricia Muñoz, Juan López Coronel, Martín Helmer, Analía Sequeira, Cristóbal Papendieck, Martín Ries 
Centeno, Darío Bessega

Collaborators: Victoria Ovin, Facundo Miri, Ariel Roldán and Fernanda Lobo

Introduction

This  work  is  a  derivation  of  what  was  explained  in  Chapter  1.  These  initial  steps 
became a formal Research Project [1] whose aim was to comprehend and to analyze 
the  characteristics  of  spatial  lines.  This  typology  constitutes  an  attractive  and 
interesting  area  of  morphology  which  had  not  been  thoroughly  examined.  It  is  a 
relevant field for design, in particular Industrial Design, as we have already shown in 
Chapter 7. The laboriousness of their representation and the difficulties to materialize 
them,  promoted  a  limited  conceptual  development.  However,  at  present  we  have 
adequate  digital  media  for  their  visualization,  analysis  and  fabrication;  and  an 
extensive morphological  knowledge on spatial  surfaces,  which make their  rigorous 
study feasible. We consider that the generation of forms for products should not be 
whimsical  or  fortuitous  because  we  understand  them  as  a  place  of  synthesis  of 
functional, technological and communicational factors. The morphological definition of 
a  product  requires  much  more  than  a  moment  of  inspiration.  It  demands  the 
knowledge that enables its intentional handling. This is the reason why form control in  
this kind of figures is particularly relevant for their application in product design.

Types of spatial lines

In this exploration three families of spatial lines were clearly identified.

1. Spatial lines created by the intersection of spatial surfaces

2. Spatial lines created by selection and combination of planar sections of spatial 
surfaces.

http://www.unicahome.com/products/small/35548.8F66FF31.jpg%20visitado%20el%2030/04/2010
http://www.marcodessi.com/


3. Spatial lines as continuous combination of planar curves inscribed in faces of 
polyhedra.

Figure 1. The three types of spatial lines detected

Lines as intersections of spatial surfaces

These are those obtained as intersections of spatial surfaces. In certain dispositions, 
planar curves can be obtained. For instance, in Figure 2, the intersection of a sphere 
and a torus is shown, in which the sphere is tangent to the torus in its horizontal 
maximum  and  minimum  circumferences.  This  intersection  produces  two  crossed 
Villarceau´s circles [2]. Moving one of the figures away from the other, the intersection 
determines spatial lines.

Figure 2. Detail of the spatial relations between the torus and the sphere, and the resulting lines

Lines obtained by selection and combination of planar sections of spatial surfaces 

We can also design spatial lines composed of planar sections of spatial surfaces. For 
instance,  in  Figure  3,  a  spatial  line  is  built  combining  selected  fragments  of  the 
intersection  between  a  triangular  prism  and  a  sphere.  The  spatial  line  is  formed 
choosing sectors of the three circumferences obtained. These type of lines are less 
continuous  in  their  curvature  than  those  created  by  direct  intersection  of  spatial  
surfaces. These lines present tangent continuity (G1) but not curvature continuity (G2). 
However,  the  possibility  of  composing  spatial  lines  from  planar  fragments  has  a 
positive side, as it makes easier its spatial manipulation, as it is possible to work with  
the planes that inscribe each sector.

Figure 3. Detail of the spatial arrangement of the planes and the sphere that enables the construction of 
the spatial line.

Lines as continuous combination of planar curves inscribed in faces of polyhedra

It  is  possible  to  work  with  the  combination  of  arcs  of  circumference  and  ellipses 
tangent to the edges of the cube, as it is shown in Figure 4. These lines have tangent 
continuity (G1) on the edge in which the joint lies.

Figure 4. Spatial line built as planar curves joined in the cubic structure.

Transformations

A series of transformations were produced,  based on the attributes of these lines, 
forcing the limits of their identification.  In the first group –spatial lines as intersection 
of spatial surfaces- the original operands were modified in their proportions and in the 
spatial disposition related to the original shape. 

The exploration which modified distinctive aspects of the operands provided a new 
comprehension of traditional geometric shapes, which allowed us to understand them 
as particular instances of continuous transformations.

For example, in Figure 5, the isometry of a bi-cylindrical curve can be transformed 



moving one of the cylinders or increasing its diameter, or changing its proportion to a 
conic  shape.  In  this  last  instance,  the  lesser  gradient  of  the  generative  line 
corresponds to a greater transformation of the spatial line.

Figure 5. Transformations of the intersection curve of two tangent cylinders with different diameter.

The modification  of  the  spatial  relations  between  the  figures  produced  continuous 
sequences of curves, regulating the overlapping area. The translation of the axis of one 
of the operands resulted in new series of spatial lines. This is illustrated in the series  
between  the  sphere  and  the  elliptic  paraboloid  shown in  Figure  6.  The  first  case 
produces two secant circumferences. 

Figure 6. Transformations of the intersection line between an elliptic paraboloid and a sphere.

We  were  able  to  check  the  direct  influence  of  the  spatial  relations  and  of  the 
transformations  of the operands in the determination of spatial lines. This made the 
control of changes easier, and provided the possibility of operating intentionally with 
these shapes.

Another relevant factor in the relation of spatial lines and the figures that determine 
them is that we can define the former considering the properties of the latter. For 
instance, the line shown in Figure 7 is the result of the intersection of a cylinder and a 
sphere, so it is a cylindrical and a spherical curve.

We could define this spatial line as the set of points that satisfy three conditions:

1. They must have a constant distance (R) to a point (centre of the sphere)

2. They must have an invariant distance (S) to a line (axis of the cylinder)

3. The distance from the point to the line should be greater than 0 and smaller 
than R+S

Figure 7. Definition of the intersection line between a sphere and a cylinder considering the properties 
of both shapes

The transformations we have previously described were also applied in the second 
group,  but  new  alternatives  were  considered.  When  points  of  double  tangency 
appeared,  more than one line could be obtained, according to the partial selections 
made. This generative strategy was relevant for the design of spatial surfaces.

In  the  third  group,  transformations  were  fundamentally  defined  by  the  polyhedral 
structure. When it was altered, it changed the construction frame for the line. The line 
could  also  modify  its  symmetry  by  moving  its  relevant  control  points  within  the 
structure.

Generation of spatial surfaces

When  we  created  spatial  surfaces  with  spatial  lines  we  defined  three  different 
strategies. They were used in the courses of Morphology and are explained in detail in 
the next chapters.

Figure 8. Spatial lines as generative lines (a) or as paths or directing lines (b)

Its main features are these:

Spatial lines as generative lines



Spatial lines define the surface through a regulated movement, with the possibility of 
changing throughout the path. Two factors  should be considered in order to avoid 
crossings: the distance between generative lines and their scaling.

Spatial lines as paths or directing lines

Spatial lines determine the path for the generative lines. The main variations deal with 
the shape of the generative line. At first, straight lines were used, which were later 
replaced by curves or became axis of other generative lines.

Spatial lines as edges of compound surfaces

The use of these lines to create new shapes starting from known forms enabled the 
creation of perceptually complex configurations which were simple in their component 
parts. The use of surfaces of union (fillets and blends in CAD systems) provided a tool 
to control the integration of the different segments.

Some conclusions

This  work  has  established  a  two  way  relation.  Outward,  in  the  development  of 
interesting spatial lines  that could create innovative spatial surfaces. Inward, in the 
progress of the knowledge of well know shapes as the sphere, as we have discovered 
new creative possibilities which were only made evident by the interaction with other 
shapes,  in  the imprints  and marks  left  on  the original  shape.  We could  also build 
transformation sequences,  which allowed us to make intentional  alterations in  the 
search of the shapes we imagined [3].

The  knowledge  produced  in  this  research  on  spatial  lines  has  given  us  control 
elements which enable intentional handling of these shapes, which is necessary to 
introduce them in industrial design objects. Its aesthetical value is increased with their 
possibilities of regulated variation and their morphogenerative potential.

Digital instruments have played an important role in this inquiry. We agree with David 
Perkins  [1997:150]  when  he  states:  “It  is  very  frequent  that  technologies  present 
themselves as a cognitive sandbox, and that they propose to build whatever is possible 
within it.” We understand that this excess of exploration weakens its potential. One of 
the more relevant aspects of the use of digital media in design is its instrumental 
character for the research of complex shapes, in their analysis and in their adjustment 
for manufacturing. These technologically mediated actions surpass mere operations 
and become a research method for the analysis of forms.

The previous knowledge on this typology, increased by the research produced with 
strong digital support, allowed us to introduce this subject matter in our courses of 
Industrial design undergraduate program at the Faculty of Architecture, Design and 
Urbanism, at the University of Buenos Aires. An experience carried out in the three 
courses of Morphology will be described in the following chapters. 

These shapes are a challenge, not only because of their complexity but because they 
are  composed  forms:  they  are  the  common  edge  of  different  figures  which  have 
diverse attributes and, as any limit, they separate and link. These lines confront us 
with shapes that do not fit in unique classifications and question some concepts we 
already considered settled. In spite of this, it is worthwhile dealing with them because 
their knowledge opens new and attractive design possibilities. 



Notes

[1] This work was developed as a research project (code SI MYC07) Spatial Lines: determination and 
production.  Director:  Patricia Muñoz. IEH,  Laboratory of Morphology,  SI,  FADU, University  of Buenos 
Aires (2007-2009)

[2]  Villarceau´s circles can be obtained as a planar section of  a torus with a plane tangent to  two 
opposite generative lines (in the rotational generation)

[3] Some results of these explorations are shown in the addendum
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PART 3. Educational explorations 

CHAPTER 9

The implementation project

Patricia Muñoz

The  institution  in  which  we  carry  out  our  research  is  the  Faculty  of  Architecture,  
Design and Urbanism, which includes five Design programs: Graphic Design, Industrial 
Design, Textile and Fashion Design and Image and Sound Design.

It is a public University, free of charge for students, and has massive population. In the 
experience we will describe, the teaching staff was composed of eighteen professors 
who worked with three hundred and fifty eight students, divided in several groups.

There  were  a  hundred  and  fifty  six  students  in  the  first  course  –  Morphology  –  
distributed in seven groups with a coordinator,  a hundred and two students in the 
second – Special Morphology 1 – with four groups and a coordinator and a hundred in 
the third one – Special Morphology 2 – with four groups and a coordinator. In addition,  
there is a general coordination that I carry out with the collaboration of one of the 
Assistant Professors.

Each  annual  course  has  thirty  meetings  of  four  hours  each,  once  a  week.  The 
experience  we will  describe  was carried  out  in  a  semester,  so  there were  fifteen 
meetings.  The three courses work simultaneously  in  three contiguous classrooms. 
This allowed an easy communication among the groups of different levels. There were 
no computers in the classrooms; we only have digital projectors for the lectures. This 
scarcity made us plan their use with anticipation and so it was not possible to use 
projections to explain something that emerged in the practice of the workshop.

This pedagogical experience is connected to the research project we developed, since 
2006, in the field of Morphology for Industrial Design. The Project, SI MyC07, which was 
explained in the previous chapter, was developed in the IEH, Laboratory of Morphology, 
depending  of  the  Research  Secretariat,  of  the  Faculty  of  Architecture,  Design  and 
Urban Studies, University of Buenos Aires. We consider it is necessary to make public 
the findings of the research projects, so that they leave the laboratory and go to the 
classroom. From the more protected place, of reflection and conceptualization, to the 
multiple  and varied universe of  the students  that,  in  this  assignment,  verified  and 
increased the initial knowledge.

The topic of spatial lines was undertaken from the specific objectives of each course, 
establishing connections to professional practice by means of the analysis of products 
that  showed  their  relevance  and  appropriateness.  Three  different  perspectives, 
corresponding to each course, allowed us to develop different aspects of the topic, 
which were integrated in some joint practices. We could understand the common topic 
as a narrative line, where contents were bound in a common construction, throughout 
a shared period of time.



Instructional sequence: separated and mixed

The joint work of the three courses on the same subject got through different practices 
connected by an instructional sequence. The courses began with a practical approach 
to the subject of spatial lines, in which each group produced objects which, in turn, 
became  instructional  material  for  the  following  assignments.  A  general  lecture 
followed, where the topic was presented to the students of the three courses. Later, 
each course worked separately,  even if  they shared some lectures and visited the 
different courses, especially on days when partial advances were exhibited. By the end 
of the term, the three courses made the same practice, transferring to an industrial 
design product what they have learnt. In this last assignment the students of the three 
courses worked mixed in the same classroom. This was very interesting because they 
could share and see different points of view and comments were more varied. Finally  
a closing lecture took place, which recovered the initial explanations with examples of 
the  students´  work.  There  was  also  a  comparison  between  specific  issues  which 
emerged in the different courses

CHAPTER 10

Exploring form and teaching of Spatial Lines in Morphology

Nora Pereyra

In the first level of Morphology at Industrial Design undergraduate program, spatial 
lines were studied according to students´ knowledge and in a general view. They have 
already gone through an introductory course and they have to face specific knowledge 
and the vocabulary that they will learn along the assignments.

The tasks of the students in this first course aim to add instrumental and conceptual 
resources to work intentionally with forms, discovering the different attributes that 
can be transformed in order to create alternatives and new projects. The final result of 
a practice was reused as starting point to develop new projects. In the first Morphology 
four-month period we worked with a classifying system of shapes and its ways of  
concretion;  with continuous and discontinuous languages;  transformations; drawing 
methods and presentation techniques. All these subjects were undertaken with Spatial 
Lines. The previously mentioned topics are especially important in Industrial Design 
because  they  are  communicational  resources  with  strong  influence  on  perceptual 
factors.



On the first day of classes a first approach to the topic of Spatial Lines took place. We 
usually receive our students with a joint class. The models made up by each team 
were of the kind of spatial lines that they would be working on the four-month period  
to come.

Figure 1. Results of the team work in the first meeting

At first the typology of spatial lines was characterized. They were obtained combining 
planar lines placed on the cube faces. It should be noted that these are not the typical  
spatial lines described in Sistema de Figuras (System of Figures) (Doberti et al. 1971). 
So these spatial lines originated in the abstract structure of the cube, as a result of the 
continuous union of  curves.  We refer  to  physical  and directional  continuity,  not  to 
continuity  of  tangents  and  curvature.  Not  less  important  and  always  present,  the 
concept of interpretation led all the practice development.

We will explain the relations emerging in every action taken while developing the work, 
which were mainly explained in the purposes of the students´ guide. 

In the first stage, students concreted, using the saturation mode, a given spatial line 
based  on  one  of  cube  interpretations,  as  shown  in  figure  2.  Thus,  students  were 
introduced to disciplinary vocabulary and to concepts present in their work, such as 
abstract structure,  figure typology, and modes of concretion. Every project decision 
was based on pairs of opposite ideas that defined it. 

Figure 2. Spatial line, organized on the cubic structure, considering the cube as two trihedrons. Student: 
Rossi.

On a second stage, students modified the concretion mode with selective criteria, in 
order  to  propose  different  shape  alternatives,  either  confirming  or  rejecting  the 
original interpretation of the shape. 

Figure  3.  Volumetrical  original  concretion  and  alternatives  of  materialization.  Students:  Lucchese, 
Marino, Potente, Pratolongo

The  next  practice  began  with  the  analysis  of  one  (of  the) proposals  previously 
produced  in  order  to  define  equivalencies  and  differences  in  the  attributes  that 
determine the families of shapes, according to the System of Figures. 

Figure 4. Analysis according to the System of Figures. Students: Lucchese, Marino, Potente, Pratolongo

Later on,  intentional  and selective transformations were made,  based on decisions 
derived from the previous analysis. A significant change regarding the original figure 
was required, as can be seen in Figure 5. Students analyzed the transformed designs 
according to the System of Figures and compared it with the team’s first analysis, in 
order  to  recognize  what  attributes  were  constant  or  variable  among  the  group’s 
projects. The ultimate aim was to become aware of the following purpose: to verify the 
possibility of transforming systematically a project,  generating alternatives through  
the operation of the shape attributes.

Figure  5.  Selective  transformations.  Students:  Lucchese,  Marino,  Potente  and  Pratolongo;  Sauri, 
Vacarezza and Colombo

At the joint exhibition of the workshop results, the aim was to make the students notice 
how the focus of attraction or the main opposition changed; or how a project confirms 
the  original  shape  while  other  denies  it;  or  how  one  of  the  opposite  pairs  was 
enhanced. In short, how transformation makes possible new ways to comprehend a 



form enabling recognition of its first identity. In the signification level, the aim of this 
action was to recognize criteria underlying the transforming procedures.

The  next  practice  worked  on  the  application  of  discontinuity  to  highlight  different 
sectors of the designed shape. Components or areas were subtly defined, producing 
new interpretations of the starting shape, as it shown in Figure 6.

Figure 6. Two alternatives of discontinuity. Students: Lucchese, Marino, Potente and Pratolongo

Finally,  3D  models  were  made.  Different  variables  of  understanding  a  shape, 
developed along the four-month period, are clearly shown.

Figure 7. 3D models of some of the projects of the Morphology Course, 2007.

Tentative projects were developed and adjusted by the students before they reached 
the final solution, guided by the professor in charge of each group. Throughout the 
practice  described,  multiple  representations  were  used  in  order  to  strengthen the 
particular communicational possibilities of each instance.

What was encountered throughout the practice that we had not foreseen?

Along the development of this first term practices, there were relevant instances -on 
the process and in the final results- that should be pointed out because they expand 
the comprehension and operation on forms.

• Knowing the attributes of forms enabled our students to transform shapes in order 
to create alternative proposals,  understanding that the use of ruled transformation 
gave them the chance to work on the relation confirmation-rupture as an innovative 
factor.

•  As professors we widened our views in shape dealing,  based on the diversity of 
proposals which emerged, accepting new transformation parameters after reaching 
agreements in the whole teaching staff. Beside it allowed a thoughtful understanding 
of instructional objectives and stretched operative and communicational bonds. As a 
result our teachers’ commitment was deepened.

• Students understood that the same topic, developed in three different courses, with 
degrees of complexity corresponding to the learning possibilities of each level, offered 
rich and multiple alternatives that did not exhaust its knowledge, but opened a wide 
range of possibilities. This strategy was also understood as a method that could be 
used in other  morphological  matters,  as design tool  and as a way of  thinking and 
operating forms. 



CHAPTER 11

Spatial Lines in Special Morphology 1

Damián Mejías and Leonardo Moyano

The initial class of the workshop consisted in the construction of different geometrical 
shapes of  great  dimensions,  materialized  in  cardboard,  of  scaled  templates  of  the 
sections of  the final  object,  as  can be seen in Figure 1.  So,  after  the assembling,  
students got to know how they could obtain some of the spatial lines as a continuous 
combination of planar lines.

Figure1. Spatial lines as combination of planar sections

This assignment was the starting point for the next practice where spatial lines were 
created. They were used to design spatial surfaces,  either as generative line or as 
directive line. Later, transformations were made to create some volumes which were 
concreted in the end. 

In order to restrain the complexity of the shapes used, students could only use planar 
lines on faces of surfaces or polyhedra, which were combined to create spatial lines. 
This exercise had different stages and was done in groups. There were instances in 
which each student designed a different form and others in which the whole group 
worked in only one alternative. So, learning was expanded because different projects 
were explored and, in addition, the adjustment and extensive development of a form 
was also produced.

The aim was to work with complex shapes, in particular spatial surfaces, dealing with 
the  specific  contents  of  the  course,  such  us  generative  systems  of  surfaces  with 
constant lines. If students used variable generative lines, they should also learn how to 
control  this  variation.  Concepts  of  tangency,  curvature  and  inflection  were  also 
included.  The  double  role  of  planar  sections  of  surfaces  was  recognized:  as 
constitutive elements of given surfaces and as generative elements of new shapes.

In  a  first  stage,  work  begun  with  known  surfaces.  Students  created  spatial  lines 
combining planar sections. These spatial lines should be organized considering some 
opposite  pairs  of  concepts  such  as  continuous  /  discontinuous,  homogeneous  / 
progressive  curvature,  or  spatial  oppositions.  At  this  stage,  the  line  should  have 
isometric  symmetry.  The  joining  points  of  the  curve  should  be continuous  but  the 
spatial lines could include some angular points.

The  use  of  planar  lines  was  fundamental  to  control  the  complexity  of  the  design 
process  and  to  precise  the  spatial  location  of  its  points  on  the  original  surface, 
polyhedron or prism. Some of the planar lines were conics:  circumference,  ellipse, 
hyperbola  and  parabola.  In  the  following  example  the  student  combined  different 
sectors of ellipses and hyperbolas to obtain her spatial line. Different proportions were 
explored in order to choose the line which would be more suitable to continue with the 
project.

Figure 2. Variations in proportions of the conic surface which originated the spatial line. Student: Natalia  
Hoz

Figure 3. Spatial line combining two sectors of ellipses in the conoid, linked y a fragment of the conoidic 



hyperbola. Student: Gabriel Mansilla.

In Figure 3, the spatial line combines sectors of ellipses inscribed in horizontal planes,  
joined by fragments of conoidic hyperbolas. The final  shape has areas of different 
curvature, and  interesting oppositions for the design of new spatial surfaces in the 
following stages of the practice.

One of the spatial lines created in the group of students was chosen for the next stage.  
It could be used either as generative line or as path. If it was used as a path, simple 
curves or straight lines were used as generative lines. In order to design the surface,  
the  operations  of  rotation,  translation,  or  radial  displacement  could  be  used.  The 
generative lines could be homeometrically transformed.

In Figure 4 the spatial line, with transformations, is the generative line of the surface. A 
sector of an ellipse is the path for the movement of the line.

Figure 4. Generation of a spatial line. Student: Natalia Hoz

In Figure 5 there is another example of the first sketches, in which the spatial line is  
the directive line, or path, and a parabola with transformation is the generative line.

Figure 5. Sketches of different spatial surfaces starting from the same spatial line. Student: Rodriguez

Figure 6. Spatial line and surface created with the curve as directive line. Student: Ferriccio

Later,  students  modified  a  sector  of  the  surface  designed  in  the  previous  stage, 
creating a volume. The original generative or directive curves were transformed into a 
planar surface. This could be easily done because the spatial  curve created in the 
beginning was composed of sectors of planar curves. So, students were able to control 
rigorously the modified area,  and did not alter the original generative system. This 
transformation is catametric, because the introduction of a new typology is a breaking 
point in the continuity of transformations.

Finally, students designed the concretion of the form obtained in the previous step. The 
oppositions we have already mentioned, reappeared in these operations. The concepts 
used in the design of the original spatial line were used again in the materialization. 
The line was not just the beginning of the assignment but was built in different ways, 
showing its generative potential.

In the project shown in Figure 7, the original spatial line was recovered, integrating it  
in different ways to the rest of the object. In the alternatives A and B, the areas which 
generated the volume are fully materialized and are linked to the spatial lines, which in 
turn are defined as tubes. In the project C, the transformed areas are materialized as 
tubes and some sectors as volumes. This makes the object visually permeable, while  
in the other alternatives the opposition abstract/concrete is more relevant.

Figure 7. Surface with a volumetric area and three alternative concretions. Student: Hoz

In the other project,  shown in Figure 8, the spatial  line is materialized as a tube. It 
creates the surface by rotation with homeometric transformation.

The  oppositions  abstract/concrete  and  inside/outside  are  evident  in  the 
materialization of the areas transformed in volumes. The contact between tubes and 
volumes produces a balanced set and gives hints of the creative process.

Figure 8. Concretion of a spatial surface. Student: Sarra



The projects presented on Figure 9, show different alternative concretions of the same 
form, focusing in different attributes of the original shape. 

Figure 9. Alternative projects for the concretion of a form. Student: Maschio

Finally, in the model of Figure 10, the original spatial line can be seen as fundamental 
part of the materialization of the object. The line was built with tubes of square section,  
visually rebuilding the surface through a systematic constitution. The upper and lower 
areas have greater compactness: curved surface and volume, in the endpoints of the 
spatial lines.

Figure 10. Model of the materialization project. Student: Lauría

Some conclusions

In this practice, students could recognize the double role of the planar sections of the 
spatial surfaces: as generative system that builds and unveils the original surface and 
as possibility of creating new forms. In this line of thought Doberti (1989) says:

“The marvelous "multiple significance¨ of the surfaces, which contain and hide at the  
same time all of its generative systems, that unfold differentiated, in front of the view  
which  searches  for  comprehension  whilst  it  synthesizes  them  in  its  unity  and  
configurative continuity. Surfaces that are an ¨explanation¨ of the lines which furrow  
them and the ¨results¨ of the spatial organization of the multiple lineal systems that  
constitute them.”

Even if it  sounds contradictory, it  is right to say that it is important to know about 
planar curves, such as the conic lines and their possibilities of combination in 2 and 3D 
space in order to design spatial lines. Also,  it is relevant to be able to recognize the 
categories that organize them and their attributes because it allows us to establish 
relations  between  them  which  confirm  or  question  the  forms  they  produce. 
Throughout the practice, families of spatial lines were detected, which made possible 
the definition of groups based in their proprieties.

Students worked, not only with shapes but with the structures that support them as 
well. The operations on the planes which inscribed the planar sectors of the spatial 
lines  and  on  the  geometric  elements  of  surface  generation  and  on  the  control  of 
transformations,  gave  control  elements  of  continuous  shapes,  enabling  the 
transference of these kind of products to the universe of everyday objects in industrial 
design.

New morphogenerative strategies for spatial lines can be developed with these tools, 
keeping  a  rigorous  control  of  what  is  designed,  which  is  not  opposed  to  a  great  
creative production.



CHAPTER 12

Spatial lines in Special Morphology 2

Analía Rezk

Based on previous knowledge of our students, in the last course of Morphology the 
topic of  spatial  lines was approached from one of  their  possible  generations:  as a 
result  of  the intersection of  spatial  surfaces.  From this  point  of  view we explored 
relevant  elements  that  are  fundamental  keys  to  turn  these  lines  into  powerful 
morphogenerative factors.

This  is  closely  related  to  one  of  the  aims  of  the  third  course  of  Morphology  for  
Industrial Design, which is to qualify the students in the recognition of complex surface 
intersections as a strategy that produces new interpretations of well  known forms,  
and to reveal the strong connection that the generative systems have with the forms 
involved in the intersections.

As the first step in the workshop, students built large scale 3D models of intersections 
between surfaces, as can be seen in Figure 1.

Figure 1. Model produced in the first meeting, based on the femisphere.

The  purpose  of  this  exercise  was  to  visualize  and  to  manipulate  an  intersection 
between spatial surfaces that later the students were going to solve in drawings. So, 
the topic was approached directly from the practice and from the previously acquired 
knowledge. The students pondered on the subject through the direct visualization of 
the problem using conceptual tools too. In order to be able to visualize and understand 
the determination of the line of intersection, students had to understand not only the 
abstract  structure  and  the  generative  methods  of  the  shapes  involved,  but  their 
relevant sections and their morphological attributes as well.

The specific aim of the first stage was to instruct the student in the practice of finding 
spatial lines generated by the intersection of two given figures by means of drawing 
systems. They employed both, handmade sketches and digital tools, as is shown in 
Figure 2. In the exercise, students defined the limits of the overlapping area of the 
intersection  and established cutting  planes to  determine  the  points  of  intersection 
between the sections of both figures.

This  work  focused  in  the  conceptual  understanding  of  the  generative  systems  of 
spatial surfaces in general and, in particular, of those which take part in the analytical  
practice.  The  spatial  relations  between  the  operands  of  the  intersection  were 
thoroughly analyzed as a way of creating and rigorously transforming spatial lines.

Figure 2. Handmade and instrumental drawing of the graphic solution of a fragment of the intersection 
modeled on the first class. Student: Cortés Kenny

After this analytical practice, the following step, was the creation of continuous unions 
between spatial surfaces. This design resource is present in many everyday objects 
and  is  frequently  associated  with  specific  technologies  such  as  plastic  blowing 
process, injection, vacuum forming and those which work with flow of melted material: 



metal  casting,  injection.  This  tool  is  also  part  of  the  communicational  language of 
objects, which can be intentionally used. For all these reasons it is a relevant topic of 
the third course of Morphology.

Fillet and blend surfaces, which begun with digital modeling, create areas of transition 
and union between the intersected figures. They substitute the line of intersection by a 
spatial  surface  that  exhibits  or  hides  the  Boolean  operations  according  to  its 
proportions and the variability of its generative lines. So, the emergent surfaces of the 
intersection become connected, at least with tangent continuity.

Figure  3.  Rendering  of  minimum,  medium  and  maximum  fillets.  Students:  Ferrin,  Patron  Costas, 
Umansky, San Juan, Garcia Truchero

In the next assignment, the knowledge previously acquired in the preceding exercises 
was used to design new shapes, by means of intersections. The fundamental aim was 
to get the students to understand the possibility of creating spatial lines as a result of  
Boolean operations. Later, the controlled transformations produced adjustments in the 
spatial lines, by intentionally modifying the operators of the intersection. This allowed 
the  students  to  design  new  surfaces,  which  combined  attributes  of  those  that 
originated them.

This practice had various stages which regulated the complexity of the problems to 
solve. In stage 1, shown in Figure 4, students had to create spatial lines through the 
intersection of known spatial surfaces. It was required that the spatial line should have 
isometric symmetry.  So,  a topic previously developed,  was reviewed and extended. 
This  practice  also  involved  the  knowledge  of  generation  of  surfaces  and  of  their 
structure.  Also,  it  allowed them to work with  sketches as a preliminary approach,  
which was later defined with digital media.

Figure 4. Spatial line obtained by the intersection of a cone and a torus. Students: Magneto, Uthurriaga, 
Marini

Within  the  established  requirements,  students  explored  the  generation  of  new 
surfaces through known shapes. So, new possibilities opened that they were able to 
control  and  handle  intentionally  through  the  conceptualization  of  the  abstract 
structure of each shape and of the new combination.

In the second stage they produced a deep analysis of the previously obtained shapes 
and  the  control  of  their  attributes.  Students  chose  a  volume  emergent  of  the 
intersection of stage 1. They discovered that they could extract different shapes out of 
the same intersection, through addition, subtraction, the proper intersection or their 
combination. So, diverse interpretations were established based in different points of 
interest, as is shown in Figure 5. It also allowed them to see convex shapes as imprints 
on others, and so, as concave figures.

Figure 5. Intersection diagram of a hyperboloid of one sheet and a paraboloid of revolution, and the  
different shapes emergent from the operation. Students: Hoban, Cordero, Gardelli

Afterwards, they made a transformation on the selected shape, through homeometric 
operations in the Boolean operands or on the shape emergent of the operation. (Figure 
6)  This  let  the  students  deepen  their  knowledge  on  degrees  of  symmetry  and  on 
interpretations of form. Also it allowed a reflection on the direct influence of spatial 
relations between operands and of the modification of proportions of the figures that 
determine the spatial lines. This made the control of transformations easier and the 



intentional operation of forms.

Figure 6. Intersection diagram of a torus and a sphere, selection of an area that is homeometrically  
transformed. Student: Gechuvind

Later, in the next stage, shown in Figure 7, fillet surfaces were included as a design 
tool. Up till then, it was only an operative instrument. In order to change the way of 
using  them,  the  assignment  required  that  the  students  should  highlight  the 
transformation previously applied using this surfaces,  forcing the limit of recognition 
of the identity of the former shape. The use of these surfaces on edges should be 
selective and a clear projecting resource with defined objectives. In this case, it was 
used to emphasize the homeometry of the form. The integration of the shapes that 
composed the new shape was regulated through variations of diameter of the fillets.

Figure 7. Use of fillet surfaces as transformation instrument of a design project. Student: Cortés Kenny

It was verified how the different generative systems and its lines were the elements of 
control  of  the new lines that  surged of the intersection.  It  was demonstrated that, 
linking them to existing and known shapes,  they turned to be mighty tools  for the  
transformation of both, the operands of the intersections and the new shapes that 
resulted  from  them.  Intersections  became  instruments  of  generation  and 
comprehension of the attributes of spatial lines. 

A fundamental factor in the relation between lines and the figures that determine them 
is that we can define the formers by the attributes of the figures involved, as they are 
intimately related. 

Figure 8. 3D models of three steps in the practice.

Conclusions:

This  series  of  practices  aimed  to  let  the  students  reach  the  theoretical 
conceptualization  of  spatial  lines,  of  their  attributes  and  generative  possibilities 
starting  with  known  surfaces.  The  knowledge  of  generative  systems  of  spatial 
surfaces provided the means to make an intentional and deliberate use of the features 
of the lines and new shapes that resulted from the intersection. So, it opened a broad 
range of tools for the projecting practice and it enriched the instruments available for 
the Industrial Design student.

Considering that an Industrial Designer should count with the capacity to create new 
shapes  the  requirements  and  conditions  for  the  guided  experimentation  were  put 
forward  in  order  to  develop  these  resources.  The  objective  was  that  the  future 
professionals integrate their previous knowledge, build their own projecting tools and 
discover the broad field in which this area of design unfolds. There was a special 
highlight in the strengthening of the student’s capabilities of exploration, control and 
handling of abstract concepts in the study of form, and of its application and definition 
in  the  concrete  level.  Both  instances  are  fundamental  in  the  education  of  future 
Industrial Designers.



CHAPTER 13

Derivations and conclusions

Patricia Muñoz

When we decided to transfer the findings of the research to our classrooms we had to 
revise them in order to connect them to the contents and the practices of the three 
courses of Morphology. Throughout the experience we were able to verify the validity 
of the conceptual developments by checking them in the explorations of more than 
three hundred students.

Frequently,  production is  precedent  to  theory and,  in  this  opportunity,  professional 
work  provided  us  with  the  first  elements  of  our  research  and  made  evident  the 
relevance and pertinence of  this subject  matter  in  the formative process of future 
industrial designers. So, professional practice, teaching and research came together 
and established relations of feedback which strongly motivated our students. 

Even if the conceptual scaffolding enabled our students to make handmade sketches 
in the classroom, the use of CAD systems to adjust the first conceptual explorations 
was fundamental, particularly in the second and third course. However, in the three 
instances, the initial research was handmade.

The results of the workshop in the three levels was retrieved to the students through 
the  Website,  where  they  could  see  in  detail  their partners´  production  and  read 
comments which explained the value of the exhibited work. In the final lecture, which 
closed  this  experience  for  the  three  courses,  the  learning  process  was  analyzed, 
narrating it by means of the work done throughout the experience. So, each student 
could acknowledge its contribution to the line of investigation developed in his course 
and also related to a broader context that included the other two. As a student said, the 
joint work allowed him to “see different ways of solving the assignments with different 
knowledge”.

Figure 1.  Students´  work  of  the  three  courses  of  Morphology  in  Industrial  Design  undergraduate 
program, 2007

Until 2007, when we carried out this experience, we had not included the subject of 
Spatial  Lines  as learning  objective  while  teaching Morphology in  Industrial  Design, 
because we did not have a strong theoretical basis to go beyond playful explorations 
and produce significative learning. The contents of the research project enabled this 
experience which was rich and nourishing.

Even if we have not repeated the topic of spatial lines –because since we started this 
instructional  strategy  we  have  not  repeated  any  of  them-  these  shapes  are  still 
present  in  our  assignments  because  they  have  become  an  available  content  that 
appears once and again inside other didactical issues we have developed since that 
time. Fortunately, we can say that spatial lines are today an everyday content of our 
courses  but  that  they  still  surprise  us  endlessly  with  their  beauty  and 
morphogenerative possibilities.



EPILOGUE

So, we have reached the end of what we wanted to tell  you.  Starting in the initial  
coincidence of the unexpected encounter with the past of Archytas,  to  our present 
projecting practices and to the instruction of future industrial designers; connecting 
these three moments with the same topic. 

As any limit, is always an end and a beginning. However we understand that it is a 
closing point, not an end. It allows us to settle, at least temporarily, the answers we 
have found throughout this research and its transference to our students. We know 
these conclusions are not definite and reassuring. We do not believe this would be 
desirable either. 

We  hope  to  have  aroused  someone’s  curiosity,  so  they  will  venture  on  these 
explorations.  Starting  from  shapes  that  are  supposed  to  be  well  known  but  that 
pleasingly surprise us. That are unrelenting if we can inquire them form a restless, 
questioning and perhaps a little bit irreverent point of view. If we agree to look for what 
is not passively offered but for what requires a searching activity. These are shapes 
that permanently defy our knowledge about them; that invite us to unveil that which 
we still cannot discover, even if we can suspect it. 

Because of all these reasons we can only finish repeating that this is only a closing 
point, provisional and necessary, but that it cannot be an end.
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